匹配非相关性高斯矩阵的多项式时间迭代算法

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Jian Ding, Zhangsong Li
{"title":"匹配非相关性高斯矩阵的多项式时间迭代算法","authors":"Jian Ding, Zhangsong Li","doi":"10.1007/s10208-024-09662-x","DOIUrl":null,"url":null,"abstract":"<p>Motivated by the problem of matching vertices in two correlated Erdős-Rényi graphs, we study the problem of matching two correlated Gaussian Wigner matrices. We propose an iterative matching algorithm, which succeeds in polynomial time as long as the correlation between the two Gaussian matrices does not vanish. Our result is the first polynomial time algorithm that solves a graph matching type of problem when the correlation is an arbitrarily small constant.\n</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Polynomial Time Iterative Algorithm for Matching Gaussian Matrices with Non-vanishing Correlation\",\"authors\":\"Jian Ding, Zhangsong Li\",\"doi\":\"10.1007/s10208-024-09662-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Motivated by the problem of matching vertices in two correlated Erdős-Rényi graphs, we study the problem of matching two correlated Gaussian Wigner matrices. We propose an iterative matching algorithm, which succeeds in polynomial time as long as the correlation between the two Gaussian matrices does not vanish. Our result is the first polynomial time algorithm that solves a graph matching type of problem when the correlation is an arbitrarily small constant.\\n</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10208-024-09662-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10208-024-09662-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

受两个相关厄尔多斯-雷尼图中顶点匹配问题的启发,我们研究了两个相关高斯维格纳矩阵的匹配问题。我们提出了一种迭代匹配算法,只要两个高斯矩阵之间的相关性不消失,该算法就能在多项式时间内取得成功。我们的成果是第一个在相关性为任意小常数时解决图匹配类型问题的多项式时间算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Polynomial Time Iterative Algorithm for Matching Gaussian Matrices with Non-vanishing Correlation

A Polynomial Time Iterative Algorithm for Matching Gaussian Matrices with Non-vanishing Correlation

Motivated by the problem of matching vertices in two correlated Erdős-Rényi graphs, we study the problem of matching two correlated Gaussian Wigner matrices. We propose an iterative matching algorithm, which succeeds in polynomial time as long as the correlation between the two Gaussian matrices does not vanish. Our result is the first polynomial time algorithm that solves a graph matching type of problem when the correlation is an arbitrarily small constant.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信