沙特阿拉伯西部温泉地区地热能源潜力的航磁数据分析

IF 4.8 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Konstantinos Chavanidis, Ahmed Salem, Alexandros Stampolidis, Abdul Latif Ashadi, Israa S. Abu-Mahfouz, Panagiotis Kirmizakis, Pantelis Soupios
{"title":"沙特阿拉伯西部温泉地区地热能源潜力的航磁数据分析","authors":"Konstantinos Chavanidis, Ahmed Salem, Alexandros Stampolidis, Abdul Latif Ashadi, Israa S. Abu-Mahfouz, Panagiotis Kirmizakis, Pantelis Soupios","doi":"10.1007/s11053-024-10383-9","DOIUrl":null,"url":null,"abstract":"<p>Western Saudi Arabia is a promising area for geothermal energy exploration. Its geothermal wealth is attributed to the ongoing Red Sea rift evolution and crust thinning. Several hot springs in the region indicate the presence of potential geothermal resources. The present study aimed to characterize the geothermal system of a hot spring in the region, in the area of Wadi Al Lith, where water temperature exceeds 80 °C at the surface. For this, we used aeromagnetic data from the Saudi Geological Survey. We also collected a ground magnetic gradient data profile near the hot spring. To delineate structures of interest and map the distribution of volcanic rocks and tectonic lineaments, data enhancement filters were applied to the aeromagnetic data. These data were also subjected to spectral analysis to determine the depth of the Curie isotherm, which was then used to estimate a 1D geothermal model and predict the heat flow in the study area. According to the results of the spectral analysis of aeromagnetic data, the depth of the Curie temperature isotherm was about 14.8 km. The estimated depth was validated by deep magnetotelluric soundings, which revealed a clear decrease in resistivity at the same depth level. A constrained 1D geothermal model with three different layers (upper crust, lower crust, and mantle) was constructed. The depth of the Curie isotherm and the depth to the lithosphere's base were among the constraints. Furthermore, published data were used to define the radiogenic heat production within the crust and mantle and the corresponding thermal conductivity and thickness of each layer. According to the 1D geothermal modeling results, the average heat flow of the area reaches 109.8 mW/m<sup>2</sup>, indicating potential geothermal resources. The findings of this study can be used to design a drilling program that will provide detailed information on reservoir parameters and put the geothermal resources into production.</p>","PeriodicalId":54284,"journal":{"name":"Natural Resources Research","volume":"181 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aeromagnetic Data Analysis of Geothermal Energy Potential of a Hot Spring Area in Western Saudi Arabia\",\"authors\":\"Konstantinos Chavanidis, Ahmed Salem, Alexandros Stampolidis, Abdul Latif Ashadi, Israa S. Abu-Mahfouz, Panagiotis Kirmizakis, Pantelis Soupios\",\"doi\":\"10.1007/s11053-024-10383-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Western Saudi Arabia is a promising area for geothermal energy exploration. Its geothermal wealth is attributed to the ongoing Red Sea rift evolution and crust thinning. Several hot springs in the region indicate the presence of potential geothermal resources. The present study aimed to characterize the geothermal system of a hot spring in the region, in the area of Wadi Al Lith, where water temperature exceeds 80 °C at the surface. For this, we used aeromagnetic data from the Saudi Geological Survey. We also collected a ground magnetic gradient data profile near the hot spring. To delineate structures of interest and map the distribution of volcanic rocks and tectonic lineaments, data enhancement filters were applied to the aeromagnetic data. These data were also subjected to spectral analysis to determine the depth of the Curie isotherm, which was then used to estimate a 1D geothermal model and predict the heat flow in the study area. According to the results of the spectral analysis of aeromagnetic data, the depth of the Curie temperature isotherm was about 14.8 km. The estimated depth was validated by deep magnetotelluric soundings, which revealed a clear decrease in resistivity at the same depth level. A constrained 1D geothermal model with three different layers (upper crust, lower crust, and mantle) was constructed. The depth of the Curie isotherm and the depth to the lithosphere's base were among the constraints. Furthermore, published data were used to define the radiogenic heat production within the crust and mantle and the corresponding thermal conductivity and thickness of each layer. According to the 1D geothermal modeling results, the average heat flow of the area reaches 109.8 mW/m<sup>2</sup>, indicating potential geothermal resources. The findings of this study can be used to design a drilling program that will provide detailed information on reservoir parameters and put the geothermal resources into production.</p>\",\"PeriodicalId\":54284,\"journal\":{\"name\":\"Natural Resources Research\",\"volume\":\"181 1\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Resources Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s11053-024-10383-9\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11053-024-10383-9","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

沙特阿拉伯西部是一个前景广阔的地热能源勘探区。其地热资源的丰富归功于红海裂谷的持续演化和地壳变薄。该地区的几个温泉表明存在潜在的地热资源。本研究旨在描述该地区 Wadi Al Lith 地区一个温泉的地热系统特征,该温泉的地表水温超过 80 °C。为此,我们使用了沙特地质调查局提供的航空磁数据。我们还在温泉附近收集了地面磁梯度数据剖面图。为了划定感兴趣的结构,绘制火山岩和构造线的分布图,我们对航空磁数据应用了数据增强滤波器。还对这些数据进行了光谱分析,以确定居里等温线的深度,然后用于估算一维地热模型和预测研究区域的热流。根据航磁数据的频谱分析结果,居里温度等温线的深度约为 14.8 千米。深层磁法探测验证了这一估计深度,探测结果显示同一深度的电阻率明显下降。构建了一个包含三个不同层(上地壳、下地壳和地幔)的约束一维地热模型。居里等温线的深度和岩石圈底部的深度也是制约因素之一。此外,还利用已公布的数据确定了地壳和地幔内的辐射产热量以及各层相应的热导率和厚度。根据一维地热建模结果,该地区的平均热流量达到 109.8 mW/m2,显示了潜在的地热资源。这项研究的结果可用于设计钻探计划,提供储层参数的详细信息,并将地热资源投入生产。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Aeromagnetic Data Analysis of Geothermal Energy Potential of a Hot Spring Area in Western Saudi Arabia

Aeromagnetic Data Analysis of Geothermal Energy Potential of a Hot Spring Area in Western Saudi Arabia

Western Saudi Arabia is a promising area for geothermal energy exploration. Its geothermal wealth is attributed to the ongoing Red Sea rift evolution and crust thinning. Several hot springs in the region indicate the presence of potential geothermal resources. The present study aimed to characterize the geothermal system of a hot spring in the region, in the area of Wadi Al Lith, where water temperature exceeds 80 °C at the surface. For this, we used aeromagnetic data from the Saudi Geological Survey. We also collected a ground magnetic gradient data profile near the hot spring. To delineate structures of interest and map the distribution of volcanic rocks and tectonic lineaments, data enhancement filters were applied to the aeromagnetic data. These data were also subjected to spectral analysis to determine the depth of the Curie isotherm, which was then used to estimate a 1D geothermal model and predict the heat flow in the study area. According to the results of the spectral analysis of aeromagnetic data, the depth of the Curie temperature isotherm was about 14.8 km. The estimated depth was validated by deep magnetotelluric soundings, which revealed a clear decrease in resistivity at the same depth level. A constrained 1D geothermal model with three different layers (upper crust, lower crust, and mantle) was constructed. The depth of the Curie isotherm and the depth to the lithosphere's base were among the constraints. Furthermore, published data were used to define the radiogenic heat production within the crust and mantle and the corresponding thermal conductivity and thickness of each layer. According to the 1D geothermal modeling results, the average heat flow of the area reaches 109.8 mW/m2, indicating potential geothermal resources. The findings of this study can be used to design a drilling program that will provide detailed information on reservoir parameters and put the geothermal resources into production.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Natural Resources Research
Natural Resources Research Environmental Science-General Environmental Science
CiteScore
11.90
自引率
11.10%
发文量
151
期刊介绍: This journal publishes quantitative studies of natural (mainly but not limited to mineral) resources exploration, evaluation and exploitation, including environmental and risk-related aspects. Typical articles use geoscientific data or analyses to assess, test, or compare resource-related aspects. NRR covers a wide variety of resources including minerals, coal, hydrocarbon, geothermal, water, and vegetation. Case studies are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信