{"title":"线性切比雪夫近似的 $$L_q$$ 加权对偶编程和一种内点法","authors":"Yang Linyi, Zhang Lei-Hong, Zhang Ya-Nan","doi":"10.1007/s10444-024-10177-w","DOIUrl":null,"url":null,"abstract":"<div><p>Given samples of a real or complex-valued function on a set of distinct nodes, the traditional linear Chebyshev approximation is to compute the minimax approximation on a prescribed linear functional space. Lawson’s iteration is a classical and well-known method for the task. However, Lawson’s iteration converges only linearly and in many cases, the convergence is very slow. In this paper, relying upon the Lagrange duality, we establish an <span>\\(L_q\\)</span>-weighted dual programming for the discrete linear Chebyshev approximation. In this framework of dual problem, we revisit the convergence of Lawson’s iteration and provide a new and self-contained proof for the well-known Alternation Theorem in the real case; moreover, we propose a Newton type iteration, the interior-point method, to solve the <span>\\(L_2\\)</span>-weighted dual programming. Numerical experiments are reported to demonstrate its fast convergence and its capability in finding the reference points that characterize the unique minimax approximation.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The \\\\(L_q\\\\)-weighted dual programming of the linear Chebyshev approximation and an interior-point method\",\"authors\":\"Yang Linyi, Zhang Lei-Hong, Zhang Ya-Nan\",\"doi\":\"10.1007/s10444-024-10177-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Given samples of a real or complex-valued function on a set of distinct nodes, the traditional linear Chebyshev approximation is to compute the minimax approximation on a prescribed linear functional space. Lawson’s iteration is a classical and well-known method for the task. However, Lawson’s iteration converges only linearly and in many cases, the convergence is very slow. In this paper, relying upon the Lagrange duality, we establish an <span>\\\\(L_q\\\\)</span>-weighted dual programming for the discrete linear Chebyshev approximation. In this framework of dual problem, we revisit the convergence of Lawson’s iteration and provide a new and self-contained proof for the well-known Alternation Theorem in the real case; moreover, we propose a Newton type iteration, the interior-point method, to solve the <span>\\\\(L_2\\\\)</span>-weighted dual programming. Numerical experiments are reported to demonstrate its fast convergence and its capability in finding the reference points that characterize the unique minimax approximation.</p></div>\",\"PeriodicalId\":50869,\"journal\":{\"name\":\"Advances in Computational Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Computational Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10444-024-10177-w\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10444-024-10177-w","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
The \(L_q\)-weighted dual programming of the linear Chebyshev approximation and an interior-point method
Given samples of a real or complex-valued function on a set of distinct nodes, the traditional linear Chebyshev approximation is to compute the minimax approximation on a prescribed linear functional space. Lawson’s iteration is a classical and well-known method for the task. However, Lawson’s iteration converges only linearly and in many cases, the convergence is very slow. In this paper, relying upon the Lagrange duality, we establish an \(L_q\)-weighted dual programming for the discrete linear Chebyshev approximation. In this framework of dual problem, we revisit the convergence of Lawson’s iteration and provide a new and self-contained proof for the well-known Alternation Theorem in the real case; moreover, we propose a Newton type iteration, the interior-point method, to solve the \(L_2\)-weighted dual programming. Numerical experiments are reported to demonstrate its fast convergence and its capability in finding the reference points that characterize the unique minimax approximation.
期刊介绍:
Advances in Computational Mathematics publishes high quality, accessible and original articles at the forefront of computational and applied mathematics, with a clear potential for impact across the sciences. The journal emphasizes three core areas: approximation theory and computational geometry; numerical analysis, modelling and simulation; imaging, signal processing and data analysis.
This journal welcomes papers that are accessible to a broad audience in the mathematical sciences and that show either an advance in computational methodology or a novel scientific application area, or both. Methods papers should rely on rigorous analysis and/or convincing numerical studies.