将纳米淀粉辅助乳液中稳定的亲水性和疏水性生物活性物质共同封装在同轴三维打印的内核凝胶中

IF 10.7 1区 化学 Q1 CHEMISTRY, APPLIED
{"title":"将纳米淀粉辅助乳液中稳定的亲水性和疏水性生物活性物质共同封装在同轴三维打印的内核凝胶中","authors":"","doi":"10.1016/j.carbpol.2024.122499","DOIUrl":null,"url":null,"abstract":"<div><p>3D printing technology, especially coaxial 3D mode of multiple-component shaping, has great potential in the manufacture of personalized nutritional foods. However, integrating and stabilizing functional objectives of different natures remains a challenge for 3D customized foods. Here, we used starch nanoparticle (SNP) to assisted soy protein (SPI) emulsion to load hydrophilic and hydrophobic bioactives (anthocyanin, AC, and curcumin, Cur). The addition of SNP significantly improved the storage stability of the emulsion. Xanthan gum (XG) was also added to the SNP/SPI system to enhance its rheology and form an emulsion gel as inner core of coaxial 3D printing. Low field nuclear magnetic resonance and emulsification analyses showed that AC/Cur@SNP/SPI/XG functional inner core had a strong water binding state and good stability. After printing with outer layer, the SNP/SPI coaxial sample had the lowest deviation rate of 0.8 %. Also, SNP/SPI coaxial sample showed higher AC (90.2 %) and Cur (90.8 %) retention compared to pure starch (S), pure SNP, pure SPI, and S/SPI samples as well as SNP/SPI sample printed without outer layer. In summary, this study provides a new perspective for the manufacture of customized products as multifunctional foods, feeds and even potential delivery of drugs.</p></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":null,"pages":null},"PeriodicalIF":10.7000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Co-encapsulation of hydrophilic and hydrophobic bioactives stabilized in nanostarch-assisted emulsion for inner core gel of coaxial 3D printing\",\"authors\":\"\",\"doi\":\"10.1016/j.carbpol.2024.122499\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>3D printing technology, especially coaxial 3D mode of multiple-component shaping, has great potential in the manufacture of personalized nutritional foods. However, integrating and stabilizing functional objectives of different natures remains a challenge for 3D customized foods. Here, we used starch nanoparticle (SNP) to assisted soy protein (SPI) emulsion to load hydrophilic and hydrophobic bioactives (anthocyanin, AC, and curcumin, Cur). The addition of SNP significantly improved the storage stability of the emulsion. Xanthan gum (XG) was also added to the SNP/SPI system to enhance its rheology and form an emulsion gel as inner core of coaxial 3D printing. Low field nuclear magnetic resonance and emulsification analyses showed that AC/Cur@SNP/SPI/XG functional inner core had a strong water binding state and good stability. After printing with outer layer, the SNP/SPI coaxial sample had the lowest deviation rate of 0.8 %. Also, SNP/SPI coaxial sample showed higher AC (90.2 %) and Cur (90.8 %) retention compared to pure starch (S), pure SNP, pure SPI, and S/SPI samples as well as SNP/SPI sample printed without outer layer. In summary, this study provides a new perspective for the manufacture of customized products as multifunctional foods, feeds and even potential delivery of drugs.</p></div>\",\"PeriodicalId\":261,\"journal\":{\"name\":\"Carbohydrate Polymers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbohydrate Polymers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0144861724007252\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymers","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0144861724007252","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

三维打印技术,尤其是多组分成型的同轴三维模式,在制造个性化营养食品方面具有巨大潜力。然而,整合和稳定不同性质的功能目标仍是三维定制食品面临的一项挑战。在这里,我们使用淀粉纳米粒子(SNP)来辅助大豆蛋白(SPI)乳液,以负载亲水性和疏水性生物活性物质(花青素(AC)和姜黄素(Cur))。添加 SNP 后,乳液的储存稳定性明显提高。在 SNP/SPI 系统中还添加了黄原胶 (XG),以增强其流变性并形成乳液凝胶,作为同轴 3D 打印的内核。低场核磁共振和乳化分析表明,AC/Cur@SNP/SPI/XG 功能内核具有较强的水结合状态和良好的稳定性。打印外层后,SNP/SPI 同轴样品的偏差率最低,仅为 0.8%。此外,与纯淀粉(S)、纯 SNP、纯 SPI、S/SPI 样品以及不带外层的 SNP/SPI 印刷样品相比,SNP/SPI 同轴样品的 AC(90.2%)和 Cur(90.8%)保留率更高。总之,这项研究为生产定制产品(如多功能食品、饲料甚至潜在的药物输送)提供了一个新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Co-encapsulation of hydrophilic and hydrophobic bioactives stabilized in nanostarch-assisted emulsion for inner core gel of coaxial 3D printing

3D printing technology, especially coaxial 3D mode of multiple-component shaping, has great potential in the manufacture of personalized nutritional foods. However, integrating and stabilizing functional objectives of different natures remains a challenge for 3D customized foods. Here, we used starch nanoparticle (SNP) to assisted soy protein (SPI) emulsion to load hydrophilic and hydrophobic bioactives (anthocyanin, AC, and curcumin, Cur). The addition of SNP significantly improved the storage stability of the emulsion. Xanthan gum (XG) was also added to the SNP/SPI system to enhance its rheology and form an emulsion gel as inner core of coaxial 3D printing. Low field nuclear magnetic resonance and emulsification analyses showed that AC/Cur@SNP/SPI/XG functional inner core had a strong water binding state and good stability. After printing with outer layer, the SNP/SPI coaxial sample had the lowest deviation rate of 0.8 %. Also, SNP/SPI coaxial sample showed higher AC (90.2 %) and Cur (90.8 %) retention compared to pure starch (S), pure SNP, pure SPI, and S/SPI samples as well as SNP/SPI sample printed without outer layer. In summary, this study provides a new perspective for the manufacture of customized products as multifunctional foods, feeds and even potential delivery of drugs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carbohydrate Polymers
Carbohydrate Polymers 化学-高分子科学
CiteScore
22.40
自引率
8.00%
发文量
1286
审稿时长
47 days
期刊介绍: Carbohydrate Polymers stands as a prominent journal in the glycoscience field, dedicated to exploring and harnessing the potential of polysaccharides with applications spanning bioenergy, bioplastics, biomaterials, biorefining, chemistry, drug delivery, food, health, nanotechnology, packaging, paper, pharmaceuticals, medicine, oil recovery, textiles, tissue engineering, wood, and various aspects of glycoscience. The journal emphasizes the central role of well-characterized carbohydrate polymers, highlighting their significance as the primary focus rather than a peripheral topic. Each paper must prominently feature at least one named carbohydrate polymer, evident in both citation and title, with a commitment to innovative research that advances scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信