{"title":"基于空间加权 EMD-LSTM 的 PM2.5 短期预测研究方法","authors":"Qian Yu , Hong-wu Yuan , Zhao-long Liu , Guo-ming Xu","doi":"10.1016/j.apr.2024.102256","DOIUrl":null,"url":null,"abstract":"<div><p>Given the significant health and environmental risks posed by atmospheric <span><math><msub><mrow><mi>PM</mi></mrow><mrow><mn>2</mn><mo>.</mo><mn>5</mn></mrow></msub></math></span> pollution, accurately predicting its concentration changes is especially important. Current models fall short in researching time-series feature extraction from pollutants and spatial correlations among monitoring stations. In this study, a spatiotemporal prediction model is introduced to address these issues. The model combines spatial weighting, empirical mode decomposition (EMD), and a long short-term memory (LSTM) network. First, weights are allocated to sites using Pearson correlation analysis and distance weighting methods. Next, the pollutant time series is decomposed using the EMD method. The highly correlated intrinsic mode function (IMF) component is selected for signal reconstruction, enhancing denoising. Finally, the model uses an LSTM network to capture nonlinear and dynamic time series traits, which significantly improves the <span><math><msub><mrow><mi>PM</mi></mrow><mrow><mn>2</mn><mo>.</mo><mn>5</mn></mrow></msub></math></span> prediction accuracy. The model utilizes data collected from 10 monitoring stations across Hefei city during 2018-2019, employing the previous 24 h of observations to forecast <span><math><msub><mrow><mi>PM</mi></mrow><mrow><mn>2</mn><mo>.</mo><mn>5</mn></mrow></msub></math></span> concentrations for the subsequent hour. By comparing with RNN, HPO-RNN, GRU, LSTM, and CBAM-CNN-Bi LSTM, the results show that our model surpasses five benchmark models in terms of prediction accuracy. Relative to the best-performing CBAM-CNN-Bi LSTM model, our model reduces RMSE and MAE by 73.91% and 72.99%, respectively, and improves <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> by 8.15%. In summary, the proposed spatial weighting EMD-LSTM model offers an efficient new approach for predicting atmospheric <span><math><msub><mrow><mi>PM</mi></mrow><mrow><mn>2</mn><mo>.</mo><mn>5</mn></mrow></msub></math></span> pollution. It integrates spatial and time series analysis, significantly enhancing the prediction accuracy.</p></div>","PeriodicalId":8604,"journal":{"name":"Atmospheric Pollution Research","volume":"15 10","pages":"Article 102256"},"PeriodicalIF":3.9000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatial weighting EMD-LSTM based approach for short-term PM2.5 prediction research\",\"authors\":\"Qian Yu , Hong-wu Yuan , Zhao-long Liu , Guo-ming Xu\",\"doi\":\"10.1016/j.apr.2024.102256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Given the significant health and environmental risks posed by atmospheric <span><math><msub><mrow><mi>PM</mi></mrow><mrow><mn>2</mn><mo>.</mo><mn>5</mn></mrow></msub></math></span> pollution, accurately predicting its concentration changes is especially important. Current models fall short in researching time-series feature extraction from pollutants and spatial correlations among monitoring stations. In this study, a spatiotemporal prediction model is introduced to address these issues. The model combines spatial weighting, empirical mode decomposition (EMD), and a long short-term memory (LSTM) network. First, weights are allocated to sites using Pearson correlation analysis and distance weighting methods. Next, the pollutant time series is decomposed using the EMD method. The highly correlated intrinsic mode function (IMF) component is selected for signal reconstruction, enhancing denoising. Finally, the model uses an LSTM network to capture nonlinear and dynamic time series traits, which significantly improves the <span><math><msub><mrow><mi>PM</mi></mrow><mrow><mn>2</mn><mo>.</mo><mn>5</mn></mrow></msub></math></span> prediction accuracy. The model utilizes data collected from 10 monitoring stations across Hefei city during 2018-2019, employing the previous 24 h of observations to forecast <span><math><msub><mrow><mi>PM</mi></mrow><mrow><mn>2</mn><mo>.</mo><mn>5</mn></mrow></msub></math></span> concentrations for the subsequent hour. By comparing with RNN, HPO-RNN, GRU, LSTM, and CBAM-CNN-Bi LSTM, the results show that our model surpasses five benchmark models in terms of prediction accuracy. Relative to the best-performing CBAM-CNN-Bi LSTM model, our model reduces RMSE and MAE by 73.91% and 72.99%, respectively, and improves <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> by 8.15%. In summary, the proposed spatial weighting EMD-LSTM model offers an efficient new approach for predicting atmospheric <span><math><msub><mrow><mi>PM</mi></mrow><mrow><mn>2</mn><mo>.</mo><mn>5</mn></mrow></msub></math></span> pollution. It integrates spatial and time series analysis, significantly enhancing the prediction accuracy.</p></div>\",\"PeriodicalId\":8604,\"journal\":{\"name\":\"Atmospheric Pollution Research\",\"volume\":\"15 10\",\"pages\":\"Article 102256\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Pollution Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1309104224002216\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Pollution Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1309104224002216","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Spatial weighting EMD-LSTM based approach for short-term PM2.5 prediction research
Given the significant health and environmental risks posed by atmospheric pollution, accurately predicting its concentration changes is especially important. Current models fall short in researching time-series feature extraction from pollutants and spatial correlations among monitoring stations. In this study, a spatiotemporal prediction model is introduced to address these issues. The model combines spatial weighting, empirical mode decomposition (EMD), and a long short-term memory (LSTM) network. First, weights are allocated to sites using Pearson correlation analysis and distance weighting methods. Next, the pollutant time series is decomposed using the EMD method. The highly correlated intrinsic mode function (IMF) component is selected for signal reconstruction, enhancing denoising. Finally, the model uses an LSTM network to capture nonlinear and dynamic time series traits, which significantly improves the prediction accuracy. The model utilizes data collected from 10 monitoring stations across Hefei city during 2018-2019, employing the previous 24 h of observations to forecast concentrations for the subsequent hour. By comparing with RNN, HPO-RNN, GRU, LSTM, and CBAM-CNN-Bi LSTM, the results show that our model surpasses five benchmark models in terms of prediction accuracy. Relative to the best-performing CBAM-CNN-Bi LSTM model, our model reduces RMSE and MAE by 73.91% and 72.99%, respectively, and improves by 8.15%. In summary, the proposed spatial weighting EMD-LSTM model offers an efficient new approach for predicting atmospheric pollution. It integrates spatial and time series analysis, significantly enhancing the prediction accuracy.
期刊介绍:
Atmospheric Pollution Research (APR) is an international journal designed for the publication of articles on air pollution. Papers should present novel experimental results, theory and modeling of air pollution on local, regional, or global scales. Areas covered are research on inorganic, organic, and persistent organic air pollutants, air quality monitoring, air quality management, atmospheric dispersion and transport, air-surface (soil, water, and vegetation) exchange of pollutants, dry and wet deposition, indoor air quality, exposure assessment, health effects, satellite measurements, natural emissions, atmospheric chemistry, greenhouse gases, and effects on climate change.