{"title":"使用潜在标记霍克斯过程的分层流行病模型。","authors":"Stamatina Lamprinakou , Axel Gandy","doi":"10.1016/j.mbs.2024.109260","DOIUrl":null,"url":null,"abstract":"<div><p>We extend the unstructured homogeneously mixing epidemic model introduced by Lamprinakou et al. (2023) to a finite population stratified by age bands. We model the actual unobserved infections using a latent marked Hawkes process and the reported aggregated infections as random quantities driven by the underlying Hawkes process. We apply a Kernel Density Particle Filter (KDPF) to infer the marked counting process, the instantaneous reproduction number for each age group and forecast the epidemic’s trajectory in the near future. Taking into account the individual inhomogeneity in age does not increase significantly the computational cost of the proposed inference algorithm compared to the cost of the proposed algorithm for the homogeneously unstructured epidemic model. We demonstrate that considering the individual heterogeneity in age, we can derive the instantaneous reproduction numbers per age group that provide a real-time measurement of interventions and behavioural changes of the associated groups. We illustrate the performance of the proposed inference algorithm on synthetic data sets and COVID-19-reported cases in various local authorities in the UK, and benchmark our model to the unstructured homogeneously mixing epidemic model. Our paper is a “demonstration” of a methodology that might be applied to factors other than age for stratification.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0025556424001202/pdfft?md5=401970542a2e47b018c13a6afb47611f&pid=1-s2.0-S0025556424001202-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Stratified epidemic model using a latent marked Hawkes process\",\"authors\":\"Stamatina Lamprinakou , Axel Gandy\",\"doi\":\"10.1016/j.mbs.2024.109260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We extend the unstructured homogeneously mixing epidemic model introduced by Lamprinakou et al. (2023) to a finite population stratified by age bands. We model the actual unobserved infections using a latent marked Hawkes process and the reported aggregated infections as random quantities driven by the underlying Hawkes process. We apply a Kernel Density Particle Filter (KDPF) to infer the marked counting process, the instantaneous reproduction number for each age group and forecast the epidemic’s trajectory in the near future. Taking into account the individual inhomogeneity in age does not increase significantly the computational cost of the proposed inference algorithm compared to the cost of the proposed algorithm for the homogeneously unstructured epidemic model. We demonstrate that considering the individual heterogeneity in age, we can derive the instantaneous reproduction numbers per age group that provide a real-time measurement of interventions and behavioural changes of the associated groups. We illustrate the performance of the proposed inference algorithm on synthetic data sets and COVID-19-reported cases in various local authorities in the UK, and benchmark our model to the unstructured homogeneously mixing epidemic model. Our paper is a “demonstration” of a methodology that might be applied to factors other than age for stratification.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0025556424001202/pdfft?md5=401970542a2e47b018c13a6afb47611f&pid=1-s2.0-S0025556424001202-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0025556424001202\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025556424001202","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Stratified epidemic model using a latent marked Hawkes process
We extend the unstructured homogeneously mixing epidemic model introduced by Lamprinakou et al. (2023) to a finite population stratified by age bands. We model the actual unobserved infections using a latent marked Hawkes process and the reported aggregated infections as random quantities driven by the underlying Hawkes process. We apply a Kernel Density Particle Filter (KDPF) to infer the marked counting process, the instantaneous reproduction number for each age group and forecast the epidemic’s trajectory in the near future. Taking into account the individual inhomogeneity in age does not increase significantly the computational cost of the proposed inference algorithm compared to the cost of the proposed algorithm for the homogeneously unstructured epidemic model. We demonstrate that considering the individual heterogeneity in age, we can derive the instantaneous reproduction numbers per age group that provide a real-time measurement of interventions and behavioural changes of the associated groups. We illustrate the performance of the proposed inference algorithm on synthetic data sets and COVID-19-reported cases in various local authorities in the UK, and benchmark our model to the unstructured homogeneously mixing epidemic model. Our paper is a “demonstration” of a methodology that might be applied to factors other than age for stratification.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.