记录蜗牛运动神经以研究中枢模式的产生

Robert A Wyttenbach, Bruce R Johnson
{"title":"记录蜗牛运动神经以研究中枢模式的产生","authors":"Robert A Wyttenbach, Bruce R Johnson","doi":"10.59390/JCRT2250","DOIUrl":null,"url":null,"abstract":"<p><p>Feeding in pond snails has long been a model system for central pattern generation and its modulation. The pattern is generated by a small set of neurons in the buccal ganglia, which innervate the buccal mass, esophagus, and salivary glands. In this exercise, students observe feeding behavior and then record and quantify rhythmic motor activity and its response to feeding stimulants and neuromodulators. In a standard three-hour class period, students do a dissection, record from several nerves, and perform experimental manipulations such as adding feeding stimulants, serotonin, or dopamine to the preparation. Depending on the course goals, data can be presented qualitatively or cyclic measurements and spike-rate analysis can be done. This exercise leads to discussion of neural circuitry and intrinsic properties that support pattern generation for rhythmic activities such as feeding, locomotion, and respiration.</p>","PeriodicalId":74004,"journal":{"name":"Journal of undergraduate neuroscience education : JUNE : a publication of FUN, Faculty for Undergraduate Neuroscience","volume":"20 3","pages":"A376-A386"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11256379/pdf/","citationCount":"0","resultStr":"{\"title\":\"Recording from Snail Motor Nerves to Investigate Central Pattern Generation.\",\"authors\":\"Robert A Wyttenbach, Bruce R Johnson\",\"doi\":\"10.59390/JCRT2250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Feeding in pond snails has long been a model system for central pattern generation and its modulation. The pattern is generated by a small set of neurons in the buccal ganglia, which innervate the buccal mass, esophagus, and salivary glands. In this exercise, students observe feeding behavior and then record and quantify rhythmic motor activity and its response to feeding stimulants and neuromodulators. In a standard three-hour class period, students do a dissection, record from several nerves, and perform experimental manipulations such as adding feeding stimulants, serotonin, or dopamine to the preparation. Depending on the course goals, data can be presented qualitatively or cyclic measurements and spike-rate analysis can be done. This exercise leads to discussion of neural circuitry and intrinsic properties that support pattern generation for rhythmic activities such as feeding, locomotion, and respiration.</p>\",\"PeriodicalId\":74004,\"journal\":{\"name\":\"Journal of undergraduate neuroscience education : JUNE : a publication of FUN, Faculty for Undergraduate Neuroscience\",\"volume\":\"20 3\",\"pages\":\"A376-A386\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11256379/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of undergraduate neuroscience education : JUNE : a publication of FUN, Faculty for Undergraduate Neuroscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.59390/JCRT2250\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of undergraduate neuroscience education : JUNE : a publication of FUN, Faculty for Undergraduate Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59390/JCRT2250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

长期以来,池塘蜗牛的进食一直是中枢模式产生及其调节的模型系统。这种模式是由颊神经节中的一小组神经元产生的,这些神经元支配颊肿块、食道和唾液腺。在这一练习中,学生要观察摄食行为,然后记录并量化节律性运动活动及其对摄食刺激物和神经调节剂的反应。在三小时的标准课时内,学生要进行解剖,记录多条神经的活动,并进行实验操作,如在制备过程中添加摄食刺激物、血清素或多巴胺。根据课程目标,可以定性展示数据,也可以进行循环测量和尖峰率分析。这项练习将引导学生讨论神经回路和内在特性,这些特性支持进食、运动和呼吸等节律活动的模式生成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recording from Snail Motor Nerves to Investigate Central Pattern Generation.

Feeding in pond snails has long been a model system for central pattern generation and its modulation. The pattern is generated by a small set of neurons in the buccal ganglia, which innervate the buccal mass, esophagus, and salivary glands. In this exercise, students observe feeding behavior and then record and quantify rhythmic motor activity and its response to feeding stimulants and neuromodulators. In a standard three-hour class period, students do a dissection, record from several nerves, and perform experimental manipulations such as adding feeding stimulants, serotonin, or dopamine to the preparation. Depending on the course goals, data can be presented qualitatively or cyclic measurements and spike-rate analysis can be done. This exercise leads to discussion of neural circuitry and intrinsic properties that support pattern generation for rhythmic activities such as feeding, locomotion, and respiration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信