{"title":"超分子聚合物科学中的汉密尔顿受体。","authors":"Shafieq Ahmad Wagay, Rashid Ali","doi":"10.1007/s41061-024-00471-y","DOIUrl":null,"url":null,"abstract":"<div><p>Supramolecular polymers are polymeric materials of monomeric fragments, held jointly by reversible and directional non-covalent interactions such as multiple hydrogen-bonding, charge transfer effects, host–guest interactions, metal coordination, and aromatic stacking. This review article on the Hamilton-based supramolecular polymers aims to shed light on the molecular recognition achievements by the Hamilton-based polymeric systems, evaluate Hamilton receptor’s future prospects, and capitalize its potential applications in supramolecular chemistry. To the best of our knowledge, this is the first elaborative and sole manuscript in which polymeric Hamilton receptors are being exposed in detail. The first portion of this manuscript is related to the importance and urgency of polymers along with the historic background of Hamilton receptors. The middle section discloses the potential applications of Hamilton-type receptors in various fields, e.g., dendrimers, mechanically polymeric rotaxanes, and self-assemblies. The final section of the manuscript discloses the future aspects and the importance of novel polymer-based Hamilton-type receptors in the modern era. We believe that this first review in this emerging yet immature field will be useful to inspire scientists around the world to find the unseen future prospects, thereby boosting the field related to this valued artificial receptor in the province of supramolecular chemistry and also in other domains of scientific fields and technology, as well.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":802,"journal":{"name":"Topics in Current Chemistry","volume":null,"pages":null},"PeriodicalIF":8.6000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Hamilton Receptor in Supramolecular Polymer Sciences\",\"authors\":\"Shafieq Ahmad Wagay, Rashid Ali\",\"doi\":\"10.1007/s41061-024-00471-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Supramolecular polymers are polymeric materials of monomeric fragments, held jointly by reversible and directional non-covalent interactions such as multiple hydrogen-bonding, charge transfer effects, host–guest interactions, metal coordination, and aromatic stacking. This review article on the Hamilton-based supramolecular polymers aims to shed light on the molecular recognition achievements by the Hamilton-based polymeric systems, evaluate Hamilton receptor’s future prospects, and capitalize its potential applications in supramolecular chemistry. To the best of our knowledge, this is the first elaborative and sole manuscript in which polymeric Hamilton receptors are being exposed in detail. The first portion of this manuscript is related to the importance and urgency of polymers along with the historic background of Hamilton receptors. The middle section discloses the potential applications of Hamilton-type receptors in various fields, e.g., dendrimers, mechanically polymeric rotaxanes, and self-assemblies. The final section of the manuscript discloses the future aspects and the importance of novel polymer-based Hamilton-type receptors in the modern era. We believe that this first review in this emerging yet immature field will be useful to inspire scientists around the world to find the unseen future prospects, thereby boosting the field related to this valued artificial receptor in the province of supramolecular chemistry and also in other domains of scientific fields and technology, as well.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":802,\"journal\":{\"name\":\"Topics in Current Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2024-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topics in Current Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s41061-024-00471-y\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topics in Current Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s41061-024-00471-y","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemistry","Score":null,"Total":0}
The Hamilton Receptor in Supramolecular Polymer Sciences
Supramolecular polymers are polymeric materials of monomeric fragments, held jointly by reversible and directional non-covalent interactions such as multiple hydrogen-bonding, charge transfer effects, host–guest interactions, metal coordination, and aromatic stacking. This review article on the Hamilton-based supramolecular polymers aims to shed light on the molecular recognition achievements by the Hamilton-based polymeric systems, evaluate Hamilton receptor’s future prospects, and capitalize its potential applications in supramolecular chemistry. To the best of our knowledge, this is the first elaborative and sole manuscript in which polymeric Hamilton receptors are being exposed in detail. The first portion of this manuscript is related to the importance and urgency of polymers along with the historic background of Hamilton receptors. The middle section discloses the potential applications of Hamilton-type receptors in various fields, e.g., dendrimers, mechanically polymeric rotaxanes, and self-assemblies. The final section of the manuscript discloses the future aspects and the importance of novel polymer-based Hamilton-type receptors in the modern era. We believe that this first review in this emerging yet immature field will be useful to inspire scientists around the world to find the unseen future prospects, thereby boosting the field related to this valued artificial receptor in the province of supramolecular chemistry and also in other domains of scientific fields and technology, as well.
期刊介绍:
Topics in Current Chemistry provides in-depth analyses and forward-thinking perspectives on the latest advancements in chemical research. This renowned journal encompasses various domains within chemical science and their intersections with biology, medicine, physics, and materials science.
Each collection within the journal aims to offer a comprehensive understanding, accessible to both academic and industrial readers, of emerging research in an area that captivates a broader scientific community.
In essence, Topics in Current Chemistry illuminates cutting-edge chemical research, fosters interdisciplinary collaboration, and facilitates knowledge-sharing among diverse scientific audiences.