抗菌剂结构类别与膜分离之间的相关性:新出现的脂质包装缺陷的作用。

IF 2.3 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Journal of Membrane Biology Pub Date : 2024-12-01 Epub Date: 2024-07-22 DOI:10.1007/s00232-024-00318-z
S V Sankaran, Roni Saiba, Samapan Sikdar, Satyavani Vemparala
{"title":"抗菌剂结构类别与膜分离之间的相关性:新出现的脂质包装缺陷的作用。","authors":"S V Sankaran, Roni Saiba, Samapan Sikdar, Satyavani Vemparala","doi":"10.1007/s00232-024-00318-z","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, a combination of bioinformatics and molecular dynamics simulations is employed to investigate the partitioning behavior of different classes of antimicrobial peptides (AMPs) into model membranes. The main objective is to identify any correlations between the structural characteristics of AMPs and their membrane identification and early-stage partitioning mechanisms. The simulation results reveal distinct membrane interactions among the various structural classes of AMPs, particularly in relation to the generation and subsequent interaction with lipid packing defects. Notably, AMPs with a structure-less coil conformation generate a higher number of deep and shallow defects, which are larger in size compared to other classes of AMPs. AMPs with helical component demonstrated the deepest insertion into the membrane. On the other hand, AMPs with a significant percentage of beta sheets tend to adsorb onto the membrane surface, suggesting a potentially distinct partitioning mechanism attributed to their structural rigidity. These findings highlight the diverse membrane interactions and partitioning mechanisms exhibited by different structural classes of AMPs.</p>","PeriodicalId":50129,"journal":{"name":"Journal of Membrane Biology","volume":" ","pages":"307-321"},"PeriodicalIF":2.3000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11584508/pdf/","citationCount":"0","resultStr":"{\"title\":\"Correlation Between Antimicrobial Structural Classes and Membrane Partitioning: Role of Emerging Lipid Packing Defects.\",\"authors\":\"S V Sankaran, Roni Saiba, Samapan Sikdar, Satyavani Vemparala\",\"doi\":\"10.1007/s00232-024-00318-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, a combination of bioinformatics and molecular dynamics simulations is employed to investigate the partitioning behavior of different classes of antimicrobial peptides (AMPs) into model membranes. The main objective is to identify any correlations between the structural characteristics of AMPs and their membrane identification and early-stage partitioning mechanisms. The simulation results reveal distinct membrane interactions among the various structural classes of AMPs, particularly in relation to the generation and subsequent interaction with lipid packing defects. Notably, AMPs with a structure-less coil conformation generate a higher number of deep and shallow defects, which are larger in size compared to other classes of AMPs. AMPs with helical component demonstrated the deepest insertion into the membrane. On the other hand, AMPs with a significant percentage of beta sheets tend to adsorb onto the membrane surface, suggesting a potentially distinct partitioning mechanism attributed to their structural rigidity. These findings highlight the diverse membrane interactions and partitioning mechanisms exhibited by different structural classes of AMPs.</p>\",\"PeriodicalId\":50129,\"journal\":{\"name\":\"Journal of Membrane Biology\",\"volume\":\" \",\"pages\":\"307-321\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11584508/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Membrane Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00232-024-00318-z\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00232-024-00318-z","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/22 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究结合生物信息学和分子动力学模拟,研究了不同类别的抗菌肽(AMPs)在模型膜中的分区行为。主要目的是确定 AMPs 的结构特征与其膜识别和早期分区机制之间的相关性。模拟结果揭示了不同结构类别的 AMPs 之间不同的膜相互作用,特别是与脂质堆积缺陷的产生和随后的相互作用有关。值得注意的是,具有无结构线圈构象的 AMPs 会产生更多的深层和浅层缺陷,与其他类别的 AMPs 相比,这些缺陷的尺寸更大。具有螺旋成分的 AMP 在膜中的插入深度最深。另一方面,具有相当比例β片的AMPs倾向于吸附在膜表面,这表明它们的结构刚性可能是一种独特的分区机制。这些发现凸显了不同结构类别的 AMPs 所表现出的不同膜相互作用和分区机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Correlation Between Antimicrobial Structural Classes and Membrane Partitioning: Role of Emerging Lipid Packing Defects.

Correlation Between Antimicrobial Structural Classes and Membrane Partitioning: Role of Emerging Lipid Packing Defects.

In this study, a combination of bioinformatics and molecular dynamics simulations is employed to investigate the partitioning behavior of different classes of antimicrobial peptides (AMPs) into model membranes. The main objective is to identify any correlations between the structural characteristics of AMPs and their membrane identification and early-stage partitioning mechanisms. The simulation results reveal distinct membrane interactions among the various structural classes of AMPs, particularly in relation to the generation and subsequent interaction with lipid packing defects. Notably, AMPs with a structure-less coil conformation generate a higher number of deep and shallow defects, which are larger in size compared to other classes of AMPs. AMPs with helical component demonstrated the deepest insertion into the membrane. On the other hand, AMPs with a significant percentage of beta sheets tend to adsorb onto the membrane surface, suggesting a potentially distinct partitioning mechanism attributed to their structural rigidity. These findings highlight the diverse membrane interactions and partitioning mechanisms exhibited by different structural classes of AMPs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Membrane Biology
Journal of Membrane Biology 生物-生化与分子生物学
CiteScore
4.80
自引率
4.20%
发文量
63
审稿时长
6-12 weeks
期刊介绍: The Journal of Membrane Biology is dedicated to publishing high-quality science related to membrane biology, biochemistry and biophysics. In particular, we welcome work that uses modern experimental or computational methods including but not limited to those with microscopy, diffraction, NMR, computer simulations, or biochemistry aimed at membrane associated or membrane embedded proteins or model membrane systems. These methods might be applied to study topics like membrane protein structure and function, membrane mediated or controlled signaling mechanisms, cell-cell communication via gap junctions, the behavior of proteins and lipids based on monolayer or bilayer systems, or genetic and regulatory mechanisms controlling membrane function. Research articles, short communications and reviews are all welcome. We also encourage authors to consider publishing ''negative'' results where experiments or simulations were well performed, but resulted in unusual or unexpected outcomes without obvious explanations. While we welcome connections to clinical studies, submissions that are primarily clinical in nature or that fail to make connections to the basic science issues of membrane structure, chemistry and function, are not appropriate for the journal. In a similar way, studies that are primarily descriptive and narratives of assays in a clinical or population study are best published in other journals. If you are not certain, it is entirely appropriate to write to us to inquire if your study is a good fit for the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信