微球给药的前沿发展和专利趋势:全面概述。

IF 2 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Shailesh Sharma, Pankaj, Subhash Kumar, Neelam Sharma, Surajpal Verma
{"title":"微球给药的前沿发展和专利趋势:全面概述。","authors":"Shailesh Sharma, Pankaj, Subhash Kumar, Neelam Sharma, Surajpal Verma","doi":"10.2174/0118722105296316240626071243","DOIUrl":null,"url":null,"abstract":"<p><p>Microspheres have emerged as innovative drug delivery platforms with significant potential to improve the therapeutic efficacy of drugs with limited aqueous solubility and prolong their release. This abstract provides an overview of recent developments in microsphere research, highlighting key trends and innovative approaches. Recent studies have focused on various aspects of microspheres, including formulation techniques, materials selection, and their applications in drug delivery. Recent breakthroughs in polymer science have paved the way for the creation of innovative biodegradable and biocompatible materials for microsphere fabrication, improving drug encapsulation effectiveness and release dynamics. Notably, the integration of nanomaterials and functionalized polymers has enabled precise control over drug release rates and enhanced targeting capabilities. The utilization of microspheres for administering a diverse array of therapeutic substances, including anticancer drugs, anti-inflammatory agents, and peptides, has gained significant attention. These microspheres have demonstrated the potential to enhance drug stability, minimize dosing frequency and enhance patient adherence.</p>","PeriodicalId":49324,"journal":{"name":"Recent Patents on Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cutting-Edge Developments and Patent Trends in Microspheres Drug Delivery: A Comprehensive Overview.\",\"authors\":\"Shailesh Sharma, Pankaj, Subhash Kumar, Neelam Sharma, Surajpal Verma\",\"doi\":\"10.2174/0118722105296316240626071243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microspheres have emerged as innovative drug delivery platforms with significant potential to improve the therapeutic efficacy of drugs with limited aqueous solubility and prolong their release. This abstract provides an overview of recent developments in microsphere research, highlighting key trends and innovative approaches. Recent studies have focused on various aspects of microspheres, including formulation techniques, materials selection, and their applications in drug delivery. Recent breakthroughs in polymer science have paved the way for the creation of innovative biodegradable and biocompatible materials for microsphere fabrication, improving drug encapsulation effectiveness and release dynamics. Notably, the integration of nanomaterials and functionalized polymers has enabled precise control over drug release rates and enhanced targeting capabilities. The utilization of microspheres for administering a diverse array of therapeutic substances, including anticancer drugs, anti-inflammatory agents, and peptides, has gained significant attention. These microspheres have demonstrated the potential to enhance drug stability, minimize dosing frequency and enhance patient adherence.</p>\",\"PeriodicalId\":49324,\"journal\":{\"name\":\"Recent Patents on Nanotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recent Patents on Nanotechnology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.2174/0118722105296316240626071243\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Patents on Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2174/0118722105296316240626071243","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

微球已成为一种创新的给药平台,在提高水溶性有限药物的疗效和延长药物释放时间方面具有巨大潜力。本摘要概述了微球研究的最新进展,重点介绍了主要趋势和创新方法。近期的研究集中在微球的各个方面,包括配方技术、材料选择及其在给药中的应用。聚合物科学领域的最新突破为制造可生物降解和生物兼容的创新型微球材料铺平了道路,从而提高了药物封装效果和释放动力学。值得注意的是,纳米材料与功能化聚合物的结合实现了对药物释放率的精确控制,并增强了靶向能力。利用微球施用抗癌药、消炎药和肽等各种治疗药物已受到广泛关注。这些微球已证明具有提高药物稳定性、减少给药次数和提高患者依从性的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cutting-Edge Developments and Patent Trends in Microspheres Drug Delivery: A Comprehensive Overview.

Microspheres have emerged as innovative drug delivery platforms with significant potential to improve the therapeutic efficacy of drugs with limited aqueous solubility and prolong their release. This abstract provides an overview of recent developments in microsphere research, highlighting key trends and innovative approaches. Recent studies have focused on various aspects of microspheres, including formulation techniques, materials selection, and their applications in drug delivery. Recent breakthroughs in polymer science have paved the way for the creation of innovative biodegradable and biocompatible materials for microsphere fabrication, improving drug encapsulation effectiveness and release dynamics. Notably, the integration of nanomaterials and functionalized polymers has enabled precise control over drug release rates and enhanced targeting capabilities. The utilization of microspheres for administering a diverse array of therapeutic substances, including anticancer drugs, anti-inflammatory agents, and peptides, has gained significant attention. These microspheres have demonstrated the potential to enhance drug stability, minimize dosing frequency and enhance patient adherence.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Recent Patents on Nanotechnology
Recent Patents on Nanotechnology NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
4.70
自引率
10.00%
发文量
50
审稿时长
3 months
期刊介绍: Recent Patents on Nanotechnology publishes full-length/mini reviews and research articles that reflect or deal with studies in relation to a patent, application of reported patents in a study, discussion of comparison of results regarding application of a given patent, etc., and also guest edited thematic issues on recent patents in the field of nanotechnology. A selection of important and recent patents on nanotechnology is also included in the journal. The journal is essential reading for all researchers involved in nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信