C Wang, Y K Huo, M Y Li, C Li, X H Shen, S J Wang, Y F Liu, Z X Jiang
{"title":"[Circ_0000263通过miR-338-3p/TERT抑制端粒酶蛋白的活性,从而提高Hela细胞的放射敏感性】。]","authors":"C Wang, Y K Huo, M Y Li, C Li, X H Shen, S J Wang, Y F Liu, Z X Jiang","doi":"10.3760/cma.j.cn112152-20231024-00244","DOIUrl":null,"url":null,"abstract":"<p><p><b>Objective:</b> To explore the effect and molecular mechanism of circ_0000263 on HeLa cell activity, apoptosis, telomerase activity, and radiosensitivity. <b>Methods:</b> The Hela cells were divided into si-NC, si-circ, vector, circ_0000263, anti-NC, anti-miR-338-3p, miR-NC, miR-338-3p, si-circ+anti-NC, si-circ+ anti-miR-338-3p, si-circ+vector, si-circ+TERT, sh-NC, sh-circ groups. Reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR) was used to detect the expressions of circ_0000263 and miR-338-3p. Cell clone formation array was used to detect cell survival; cell counting kit-8 (CCK-8) to detect cell proliferation; flow cytometry to detect apoptosis; western blot method to detect the expressions of proliferating cell nuclear antigen (PCNA), Cleaved-casp3, telomerase reverse transcriptase (TERT) proteins; double luciferase assay to detect the targeting relationships of circ_0000263 and miR-338-3p, miR-338-3p and TERT; telomere repeat amplification enzyme linked immunosorbent assay (TRAR-ELISA) to detect telomerase activity. <b>Results:</b> Circ_0000263 was highly expressed in Hela cells, miR-338-3p was low expressed, and TERT was highly expressed; circ_0000263 was also highly expressed in Hela cells treated with radiation (<i>P</i><0.05). Knockdown of circ_0000263 inhibited the clone formation and cell proliferation ability of HeLa cells, and enhanced the radiosensitivity and apoptosis of HeLa cells. In contrast, knockdown of circ_0000263 decreased PCNA protein expression level and enhanced Cleaved-casp3 protein expression level in HeLa cells (<i>P</i><0.05). The apoptosis rate in the si-circ group was (13.19±1.12)%, which was higher than (6.80±0.62)% of si-NC group (<i>P</i><0.05). The apoptosis rate in the si-circ+4 Gy group was (24.82±1.57)%, which was higher than (17.00±0.96)% of si-NC+4 Gy group (<i>P</i><0.05). Circ_0000263 targeted regulated miR-338-3p, and miR-338-3p targeted regulated TERT. MiR-338-3p was lowly expressed in HeLa cells, and knockdown of circ_0000263 elevated miR-338-3p expression level in HeLa cells. Circ_0000263 regulated TERT expression and inhibited telomerase activity through miR-338-3p. MiR-338-3p/TERT can restore the effect of circ_0000263 on the radiosensitivity of Hela cells. The apoptosis rate in the si-circ+anti-NC group was (27.37±0.89)%, which was higher than (18.22±1.18)% of the si-circ+anti-miR-338-3p group (<i>P</i><0.05). The apoptosis rate in the si-circ+vector group was (27.55±0.48)%, which was higher than (20.10±0.68)% of si-circ+TERT group (<i>P</i><0.05). After 72 hours of radiation by 4 Gy, the cell survival fraction of si-circ+anti-NC group was 0.41±0.02, which was lower than 0.66±0.03 of the si-circ+anti-miR-338-3p group (<i>P</i><0.05); the cell survival fraction of si-circ+vector group was 0.42±0.05, which was lower than 0.70±0.03 of si-circ+TERT group (<i>P</i><0.05). <b>Conclusion:</b> Inhibiting the expression of circ_0000263 supresses the proliferation of Hela cells by regulating miR-338-3p/TERT, promotes apoptosis, inhibits telomerase activity, increases the radiosensitivity of cancer cells, and provides a theoretical basis for improving the radiosensitivity of Hela cells.</p>","PeriodicalId":39868,"journal":{"name":"中华肿瘤杂志","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Circ_0000263 improves radiosensitivity of Hela cells by inhibiting the activity of telomerase protein through miR-338-3p/TERT].\",\"authors\":\"C Wang, Y K Huo, M Y Li, C Li, X H Shen, S J Wang, Y F Liu, Z X Jiang\",\"doi\":\"10.3760/cma.j.cn112152-20231024-00244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Objective:</b> To explore the effect and molecular mechanism of circ_0000263 on HeLa cell activity, apoptosis, telomerase activity, and radiosensitivity. <b>Methods:</b> The Hela cells were divided into si-NC, si-circ, vector, circ_0000263, anti-NC, anti-miR-338-3p, miR-NC, miR-338-3p, si-circ+anti-NC, si-circ+ anti-miR-338-3p, si-circ+vector, si-circ+TERT, sh-NC, sh-circ groups. Reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR) was used to detect the expressions of circ_0000263 and miR-338-3p. Cell clone formation array was used to detect cell survival; cell counting kit-8 (CCK-8) to detect cell proliferation; flow cytometry to detect apoptosis; western blot method to detect the expressions of proliferating cell nuclear antigen (PCNA), Cleaved-casp3, telomerase reverse transcriptase (TERT) proteins; double luciferase assay to detect the targeting relationships of circ_0000263 and miR-338-3p, miR-338-3p and TERT; telomere repeat amplification enzyme linked immunosorbent assay (TRAR-ELISA) to detect telomerase activity. <b>Results:</b> Circ_0000263 was highly expressed in Hela cells, miR-338-3p was low expressed, and TERT was highly expressed; circ_0000263 was also highly expressed in Hela cells treated with radiation (<i>P</i><0.05). Knockdown of circ_0000263 inhibited the clone formation and cell proliferation ability of HeLa cells, and enhanced the radiosensitivity and apoptosis of HeLa cells. In contrast, knockdown of circ_0000263 decreased PCNA protein expression level and enhanced Cleaved-casp3 protein expression level in HeLa cells (<i>P</i><0.05). The apoptosis rate in the si-circ group was (13.19±1.12)%, which was higher than (6.80±0.62)% of si-NC group (<i>P</i><0.05). The apoptosis rate in the si-circ+4 Gy group was (24.82±1.57)%, which was higher than (17.00±0.96)% of si-NC+4 Gy group (<i>P</i><0.05). Circ_0000263 targeted regulated miR-338-3p, and miR-338-3p targeted regulated TERT. MiR-338-3p was lowly expressed in HeLa cells, and knockdown of circ_0000263 elevated miR-338-3p expression level in HeLa cells. Circ_0000263 regulated TERT expression and inhibited telomerase activity through miR-338-3p. MiR-338-3p/TERT can restore the effect of circ_0000263 on the radiosensitivity of Hela cells. The apoptosis rate in the si-circ+anti-NC group was (27.37±0.89)%, which was higher than (18.22±1.18)% of the si-circ+anti-miR-338-3p group (<i>P</i><0.05). The apoptosis rate in the si-circ+vector group was (27.55±0.48)%, which was higher than (20.10±0.68)% of si-circ+TERT group (<i>P</i><0.05). After 72 hours of radiation by 4 Gy, the cell survival fraction of si-circ+anti-NC group was 0.41±0.02, which was lower than 0.66±0.03 of the si-circ+anti-miR-338-3p group (<i>P</i><0.05); the cell survival fraction of si-circ+vector group was 0.42±0.05, which was lower than 0.70±0.03 of si-circ+TERT group (<i>P</i><0.05). <b>Conclusion:</b> Inhibiting the expression of circ_0000263 supresses the proliferation of Hela cells by regulating miR-338-3p/TERT, promotes apoptosis, inhibits telomerase activity, increases the radiosensitivity of cancer cells, and provides a theoretical basis for improving the radiosensitivity of Hela cells.</p>\",\"PeriodicalId\":39868,\"journal\":{\"name\":\"中华肿瘤杂志\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"中华肿瘤杂志\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3760/cma.j.cn112152-20231024-00244\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"中华肿瘤杂志","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3760/cma.j.cn112152-20231024-00244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
[Circ_0000263 improves radiosensitivity of Hela cells by inhibiting the activity of telomerase protein through miR-338-3p/TERT].
Objective: To explore the effect and molecular mechanism of circ_0000263 on HeLa cell activity, apoptosis, telomerase activity, and radiosensitivity. Methods: The Hela cells were divided into si-NC, si-circ, vector, circ_0000263, anti-NC, anti-miR-338-3p, miR-NC, miR-338-3p, si-circ+anti-NC, si-circ+ anti-miR-338-3p, si-circ+vector, si-circ+TERT, sh-NC, sh-circ groups. Reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR) was used to detect the expressions of circ_0000263 and miR-338-3p. Cell clone formation array was used to detect cell survival; cell counting kit-8 (CCK-8) to detect cell proliferation; flow cytometry to detect apoptosis; western blot method to detect the expressions of proliferating cell nuclear antigen (PCNA), Cleaved-casp3, telomerase reverse transcriptase (TERT) proteins; double luciferase assay to detect the targeting relationships of circ_0000263 and miR-338-3p, miR-338-3p and TERT; telomere repeat amplification enzyme linked immunosorbent assay (TRAR-ELISA) to detect telomerase activity. Results: Circ_0000263 was highly expressed in Hela cells, miR-338-3p was low expressed, and TERT was highly expressed; circ_0000263 was also highly expressed in Hela cells treated with radiation (P<0.05). Knockdown of circ_0000263 inhibited the clone formation and cell proliferation ability of HeLa cells, and enhanced the radiosensitivity and apoptosis of HeLa cells. In contrast, knockdown of circ_0000263 decreased PCNA protein expression level and enhanced Cleaved-casp3 protein expression level in HeLa cells (P<0.05). The apoptosis rate in the si-circ group was (13.19±1.12)%, which was higher than (6.80±0.62)% of si-NC group (P<0.05). The apoptosis rate in the si-circ+4 Gy group was (24.82±1.57)%, which was higher than (17.00±0.96)% of si-NC+4 Gy group (P<0.05). Circ_0000263 targeted regulated miR-338-3p, and miR-338-3p targeted regulated TERT. MiR-338-3p was lowly expressed in HeLa cells, and knockdown of circ_0000263 elevated miR-338-3p expression level in HeLa cells. Circ_0000263 regulated TERT expression and inhibited telomerase activity through miR-338-3p. MiR-338-3p/TERT can restore the effect of circ_0000263 on the radiosensitivity of Hela cells. The apoptosis rate in the si-circ+anti-NC group was (27.37±0.89)%, which was higher than (18.22±1.18)% of the si-circ+anti-miR-338-3p group (P<0.05). The apoptosis rate in the si-circ+vector group was (27.55±0.48)%, which was higher than (20.10±0.68)% of si-circ+TERT group (P<0.05). After 72 hours of radiation by 4 Gy, the cell survival fraction of si-circ+anti-NC group was 0.41±0.02, which was lower than 0.66±0.03 of the si-circ+anti-miR-338-3p group (P<0.05); the cell survival fraction of si-circ+vector group was 0.42±0.05, which was lower than 0.70±0.03 of si-circ+TERT group (P<0.05). Conclusion: Inhibiting the expression of circ_0000263 supresses the proliferation of Hela cells by regulating miR-338-3p/TERT, promotes apoptosis, inhibits telomerase activity, increases the radiosensitivity of cancer cells, and provides a theoretical basis for improving the radiosensitivity of Hela cells.