{"title":"利用预测模型估算 p16 状态对头颈癌肿瘤放射敏感性的影响","authors":"Atsushi Kaida, Hitomi Nojima, Masahiko Miura","doi":"10.1667/RADE-24-00066.1","DOIUrl":null,"url":null,"abstract":"<p><p>The intrinsic radiosensitivity index (RSI) and genomic-adjusted radiation dose (GARD) were reported to be able to predict the surviving fraction at 2 Gy and therapeutic effect when delivering actual treatment doses using the gene expression profiles of clinical cases. Given the impact of p16 status, a surrogate marker of the human papillomavirus (HPV) infection, on radiosensitivity, we attempted to apply the RSI and GARD to estimate p16-associated radiosensitivity in head and neck squamous cell carcinoma (HNSC). For this purpose, The Cancer Genome Atlas (TCGA) dataset was employed. In the GARD calculation, we assumed that p16-positive patients received 60 Gy in 30 fractions, while p16-negative patients received 70 Gy in 35 fractions. p16 positivity was associated with favorable characteristics compared to negative patients. The RSI and GARD analyses demonstrated increased radiosensitivity and high therapeutic effect in p16-positive patients, compared to p16-negative patients. Additionally, tumor microenvironmental conditions predicted by other models were also significantly affected by p16 status. Collectively, the models used in this study could be a promising tool for estimating p16-associated radiosensitivity in HNSC.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimating Impacts of p16 Status on Tumor Radiosensitivity in Head and Neck Cancer using Predictive Models.\",\"authors\":\"Atsushi Kaida, Hitomi Nojima, Masahiko Miura\",\"doi\":\"10.1667/RADE-24-00066.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The intrinsic radiosensitivity index (RSI) and genomic-adjusted radiation dose (GARD) were reported to be able to predict the surviving fraction at 2 Gy and therapeutic effect when delivering actual treatment doses using the gene expression profiles of clinical cases. Given the impact of p16 status, a surrogate marker of the human papillomavirus (HPV) infection, on radiosensitivity, we attempted to apply the RSI and GARD to estimate p16-associated radiosensitivity in head and neck squamous cell carcinoma (HNSC). For this purpose, The Cancer Genome Atlas (TCGA) dataset was employed. In the GARD calculation, we assumed that p16-positive patients received 60 Gy in 30 fractions, while p16-negative patients received 70 Gy in 35 fractions. p16 positivity was associated with favorable characteristics compared to negative patients. The RSI and GARD analyses demonstrated increased radiosensitivity and high therapeutic effect in p16-positive patients, compared to p16-negative patients. Additionally, tumor microenvironmental conditions predicted by other models were also significantly affected by p16 status. Collectively, the models used in this study could be a promising tool for estimating p16-associated radiosensitivity in HNSC.</p>\",\"PeriodicalId\":20903,\"journal\":{\"name\":\"Radiation research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiation research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1667/RADE-24-00066.1\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiation research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1667/RADE-24-00066.1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Estimating Impacts of p16 Status on Tumor Radiosensitivity in Head and Neck Cancer using Predictive Models.
The intrinsic radiosensitivity index (RSI) and genomic-adjusted radiation dose (GARD) were reported to be able to predict the surviving fraction at 2 Gy and therapeutic effect when delivering actual treatment doses using the gene expression profiles of clinical cases. Given the impact of p16 status, a surrogate marker of the human papillomavirus (HPV) infection, on radiosensitivity, we attempted to apply the RSI and GARD to estimate p16-associated radiosensitivity in head and neck squamous cell carcinoma (HNSC). For this purpose, The Cancer Genome Atlas (TCGA) dataset was employed. In the GARD calculation, we assumed that p16-positive patients received 60 Gy in 30 fractions, while p16-negative patients received 70 Gy in 35 fractions. p16 positivity was associated with favorable characteristics compared to negative patients. The RSI and GARD analyses demonstrated increased radiosensitivity and high therapeutic effect in p16-positive patients, compared to p16-negative patients. Additionally, tumor microenvironmental conditions predicted by other models were also significantly affected by p16 status. Collectively, the models used in this study could be a promising tool for estimating p16-associated radiosensitivity in HNSC.
期刊介绍:
Radiation Research publishes original articles dealing with radiation effects and related subjects in the areas of physics, chemistry, biology
and medicine, including epidemiology and translational research. The term radiation is used in its broadest sense and includes specifically
ionizing radiation and ultraviolet, visible and infrared light as well as microwaves, ultrasound and heat. Effects may be physical, chemical or
biological. Related subjects include (but are not limited to) dosimetry methods and instrumentation, isotope techniques and studies with
chemical agents contributing to the understanding of radiation effects.