Tarun Barbhuyan, Rakesh B Patel, Ivan Budnik, Anil K Chauhan
{"title":"髓系整合素α9的基因消减可减轻早期动脉粥样硬化。","authors":"Tarun Barbhuyan, Rakesh B Patel, Ivan Budnik, Anil K Chauhan","doi":"10.1093/jleuko/qiae161","DOIUrl":null,"url":null,"abstract":"<p><p>Integrin α9β1 is known to stabilize leukocyte adhesion to the activated endothelium. We determined the role of myeloid cell α9β1 in early atherosclerosis in two models: α9Mye-KOApoe-/- or the Ldlr-/- mice transplanted with bone marrow (BM) from α9Mye-KO mice fed a high-fat \"Western\" diet for 4 wk. α9Mye-KOApoe-/- mice exhibited reduced early lesions in the aortae and aortic sinuses (P < 0.05 vs α9WT Apoe-/- mice). Similar results were obtained in α9Mye-KO BM→Ldlr-/- mice (P < 0.05 vs α9WT BM→Ldlr-/- mice). Reduced early atherosclerosis in α9Mye-KOApoe-/- mice was associated with decreased neutrophil and neutrophil extracellular traps (NETs) content in the aortic lesions (P < 0.05 vs α9WTApoe-/-). Vascular cell adhesion molecule-1-stimulated neutrophils from α9Mye-KO mice exhibited reduced adhesion, transmigration, and NETs formation (NETosis) (P < 0.05 vs α9WT neutrophils). Reduced NETosis was associated with decreased extracellular signal-regulated kinase phosphorylation, peptidyl arginine deiminase 4, and citrullinated histone H3 expression. In summary, genetic ablation of myeloid cell-specific α9 reduces early atherosclerosis, most likely by reducing neutrophil adhesion, transmigration, and NETosis.</p>","PeriodicalId":16186,"journal":{"name":"Journal of Leukocyte Biology","volume":" ","pages":"1208-1214"},"PeriodicalIF":3.6000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11531806/pdf/","citationCount":"0","resultStr":"{\"title\":\"Genetic ablation of myeloid integrin α9 attenuates early atherosclerosis.\",\"authors\":\"Tarun Barbhuyan, Rakesh B Patel, Ivan Budnik, Anil K Chauhan\",\"doi\":\"10.1093/jleuko/qiae161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Integrin α9β1 is known to stabilize leukocyte adhesion to the activated endothelium. We determined the role of myeloid cell α9β1 in early atherosclerosis in two models: α9Mye-KOApoe-/- or the Ldlr-/- mice transplanted with bone marrow (BM) from α9Mye-KO mice fed a high-fat \\\"Western\\\" diet for 4 wk. α9Mye-KOApoe-/- mice exhibited reduced early lesions in the aortae and aortic sinuses (P < 0.05 vs α9WT Apoe-/- mice). Similar results were obtained in α9Mye-KO BM→Ldlr-/- mice (P < 0.05 vs α9WT BM→Ldlr-/- mice). Reduced early atherosclerosis in α9Mye-KOApoe-/- mice was associated with decreased neutrophil and neutrophil extracellular traps (NETs) content in the aortic lesions (P < 0.05 vs α9WTApoe-/-). Vascular cell adhesion molecule-1-stimulated neutrophils from α9Mye-KO mice exhibited reduced adhesion, transmigration, and NETs formation (NETosis) (P < 0.05 vs α9WT neutrophils). Reduced NETosis was associated with decreased extracellular signal-regulated kinase phosphorylation, peptidyl arginine deiminase 4, and citrullinated histone H3 expression. In summary, genetic ablation of myeloid cell-specific α9 reduces early atherosclerosis, most likely by reducing neutrophil adhesion, transmigration, and NETosis.</p>\",\"PeriodicalId\":16186,\"journal\":{\"name\":\"Journal of Leukocyte Biology\",\"volume\":\" \",\"pages\":\"1208-1214\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11531806/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Leukocyte Biology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/jleuko/qiae161\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Leukocyte Biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jleuko/qiae161","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Genetic ablation of myeloid integrin α9 attenuates early atherosclerosis.
Integrin α9β1 is known to stabilize leukocyte adhesion to the activated endothelium. We determined the role of myeloid cell α9β1 in early atherosclerosis in two models: α9Mye-KOApoe-/- or the Ldlr-/- mice transplanted with bone marrow (BM) from α9Mye-KO mice fed a high-fat "Western" diet for 4 wk. α9Mye-KOApoe-/- mice exhibited reduced early lesions in the aortae and aortic sinuses (P < 0.05 vs α9WT Apoe-/- mice). Similar results were obtained in α9Mye-KO BM→Ldlr-/- mice (P < 0.05 vs α9WT BM→Ldlr-/- mice). Reduced early atherosclerosis in α9Mye-KOApoe-/- mice was associated with decreased neutrophil and neutrophil extracellular traps (NETs) content in the aortic lesions (P < 0.05 vs α9WTApoe-/-). Vascular cell adhesion molecule-1-stimulated neutrophils from α9Mye-KO mice exhibited reduced adhesion, transmigration, and NETs formation (NETosis) (P < 0.05 vs α9WT neutrophils). Reduced NETosis was associated with decreased extracellular signal-regulated kinase phosphorylation, peptidyl arginine deiminase 4, and citrullinated histone H3 expression. In summary, genetic ablation of myeloid cell-specific α9 reduces early atherosclerosis, most likely by reducing neutrophil adhesion, transmigration, and NETosis.
期刊介绍:
JLB is a peer-reviewed, academic journal published by the Society for Leukocyte Biology for its members and the community of immunobiologists. The journal publishes papers devoted to the exploration of the cellular and molecular biology of granulocytes, mononuclear phagocytes, lymphocytes, NK cells, and other cells involved in host physiology and defense/resistance against disease. Since all cells in the body can directly or indirectly contribute to the maintenance of the integrity of the organism and restoration of homeostasis through repair, JLB also considers articles involving epithelial, endothelial, fibroblastic, neural, and other somatic cell types participating in host defense. Studies covering pathophysiology, cell development, differentiation and trafficking; fundamental, translational and clinical immunology, inflammation, extracellular mediators and effector molecules; receptors, signal transduction and genes are considered relevant. Research articles and reviews that provide a novel understanding in any of these fields are given priority as well as technical advances related to leukocyte research methods.