微生物组和细菌产生的代谢中间产物对乳腺癌的影响。

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Accounts of Chemical Research Pub Date : 2024-07-22 eCollection Date: 2024-01-01 DOI:10.1590/1678-4685-GMB-2023-0316
Vívian D'Afonseca, Elizabeth Valdés Muñoz, Alan López Leal, Patricio Maximiliano Adrián Suazo Soto, Cristóbal Parra-Cid
{"title":"微生物组和细菌产生的代谢中间产物对乳腺癌的影响。","authors":"Vívian D'Afonseca, Elizabeth Valdés Muñoz, Alan López Leal, Patricio Maximiliano Adrián Suazo Soto, Cristóbal Parra-Cid","doi":"10.1590/1678-4685-GMB-2023-0316","DOIUrl":null,"url":null,"abstract":"<p><p>The breast microbiome presents a diverse microbial community that could affects health and disease states, in the context of breast cancer. Sequencing technologies have allowed describing the diversity and abundance of microbial communities among individuals. The complex tumoral microenvironment that includes the microbial composition could influence tumor growth. The imbalance of diversity and abundance inside the microbial community, known as dysbiosis plays a crucial role in this context. One the most prevalent bacterial genera described in breast invasive carcinoma are Bacillus, Pseudomonas, Brevibacillus, Mycobacterium, Thermoviga, Acinetobacter, Corynebacterium, Paenibacillus, Ensifer, and Bacteroides. Paenibacills genus shows a relation with patient survival. When the Paenibacills genus increases its abundance in patients with breast cancer, the survival probability decreases. Within this dysbiotic environment, various bacterial metabolites could play a pivotal role in the progression and modulation of breast cancer. Key bacterial metabolites, such as cadaverine, lipopolysaccharides (LPS), and trimethylamine N-oxide (TMAO), have been found to exhibit potential interactions within breast tissue microenvironments. Understanding the intricate relationships between dysbiosis and these metabolites in breast cancer may open new avenues for diagnostic biomarkers and therapeutic targets. Further research is essential to unravel the specific roles and mechanisms of these microbial metabolites in breast cancer progression.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11262001/pdf/","citationCount":"0","resultStr":"{\"title\":\"Implications of the microbiome and metabolic intermediaries produced by bacteria in breast cancer.\",\"authors\":\"Vívian D'Afonseca, Elizabeth Valdés Muñoz, Alan López Leal, Patricio Maximiliano Adrián Suazo Soto, Cristóbal Parra-Cid\",\"doi\":\"10.1590/1678-4685-GMB-2023-0316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The breast microbiome presents a diverse microbial community that could affects health and disease states, in the context of breast cancer. Sequencing technologies have allowed describing the diversity and abundance of microbial communities among individuals. The complex tumoral microenvironment that includes the microbial composition could influence tumor growth. The imbalance of diversity and abundance inside the microbial community, known as dysbiosis plays a crucial role in this context. One the most prevalent bacterial genera described in breast invasive carcinoma are Bacillus, Pseudomonas, Brevibacillus, Mycobacterium, Thermoviga, Acinetobacter, Corynebacterium, Paenibacillus, Ensifer, and Bacteroides. Paenibacills genus shows a relation with patient survival. When the Paenibacills genus increases its abundance in patients with breast cancer, the survival probability decreases. Within this dysbiotic environment, various bacterial metabolites could play a pivotal role in the progression and modulation of breast cancer. Key bacterial metabolites, such as cadaverine, lipopolysaccharides (LPS), and trimethylamine N-oxide (TMAO), have been found to exhibit potential interactions within breast tissue microenvironments. Understanding the intricate relationships between dysbiosis and these metabolites in breast cancer may open new avenues for diagnostic biomarkers and therapeutic targets. Further research is essential to unravel the specific roles and mechanisms of these microbial metabolites in breast cancer progression.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11262001/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1590/1678-4685-GMB-2023-0316\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1590/1678-4685-GMB-2023-0316","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

乳腺微生物组是一个多样化的微生物群落,可能会影响乳腺癌患者的健康和疾病状态。测序技术可以描述个体间微生物群落的多样性和丰度。包括微生物组成在内的复杂肿瘤微环境会影响肿瘤的生长。微生物群落内部多样性和丰度的失衡,即所谓的菌群失调,在这方面起着至关重要的作用。乳腺浸润性癌中最常见的细菌属之一是芽孢杆菌、假单胞菌、布氏杆菌、分枝杆菌、热维氏菌、醋氨杆菌、棒状杆菌、Paenibacillus、Ensifer 和 Bacteroides。Paenibacills属与患者存活率有关。当乳腺癌患者体内的Paenibacills属数量增加时,患者的存活率就会下降。在这种菌群失调的环境中,各种细菌代谢产物可能在乳腺癌的进展和调控中发挥关键作用。研究发现,尸胺、脂多糖(LPS)和三甲胺 N-氧化物(TMAO)等主要细菌代谢物在乳腺组织微环境中表现出潜在的相互作用。了解乳腺癌中菌群失调与这些代谢物之间错综复杂的关系,可为诊断生物标志物和治疗靶点开辟新的途径。进一步的研究对于揭示这些微生物代谢物在乳腺癌进展中的具体作用和机制至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Implications of the microbiome and metabolic intermediaries produced by bacteria in breast cancer.

The breast microbiome presents a diverse microbial community that could affects health and disease states, in the context of breast cancer. Sequencing technologies have allowed describing the diversity and abundance of microbial communities among individuals. The complex tumoral microenvironment that includes the microbial composition could influence tumor growth. The imbalance of diversity and abundance inside the microbial community, known as dysbiosis plays a crucial role in this context. One the most prevalent bacterial genera described in breast invasive carcinoma are Bacillus, Pseudomonas, Brevibacillus, Mycobacterium, Thermoviga, Acinetobacter, Corynebacterium, Paenibacillus, Ensifer, and Bacteroides. Paenibacills genus shows a relation with patient survival. When the Paenibacills genus increases its abundance in patients with breast cancer, the survival probability decreases. Within this dysbiotic environment, various bacterial metabolites could play a pivotal role in the progression and modulation of breast cancer. Key bacterial metabolites, such as cadaverine, lipopolysaccharides (LPS), and trimethylamine N-oxide (TMAO), have been found to exhibit potential interactions within breast tissue microenvironments. Understanding the intricate relationships between dysbiosis and these metabolites in breast cancer may open new avenues for diagnostic biomarkers and therapeutic targets. Further research is essential to unravel the specific roles and mechanisms of these microbial metabolites in breast cancer progression.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信