{"title":"取代甘氨酸的表环素-1 变体具有更高的稳定性和更强的抗菌活性,可抵抗一系列鼻腔致病菌。","authors":"Sivakumar Jeyarajan, Ansu Susan Peter, Sukumar Ranjith, Aswathy Sathyan, Senbagam Duraisamy, Indira Kandasamy, Prahalathan Chidambaram, Anbarasu Kumarasamy","doi":"10.1002/bab.2637","DOIUrl":null,"url":null,"abstract":"<p><p>Epinecidin-1 (epi-1), an antimicrobial peptide first identified in marine grouper fish, has multifunctional bioactivities. The present study aims to improve its therapeutic potential via structural modifications that could enhance its antimicrobial activity and stability. To achieve it, we replaced glycine and the first histidine in the parent epi-1 with lysine, which resulted in a peptide with a repeating KXXK motif and improved physiochemical properties related to antimicrobial activity. This modified peptide, referred to as glycine-to-lysine replaced-epi-1, also gained stability and a twofold increase in helical propensity. To produce the active peptide, overlap extension PCR was employed to generate the gene of GK-epi-1 via site-directed mutagenesis, which was then cloned into the pET-32a vector and expressed as a recombinant fusion protein in Escherichia coli C43 (DE3) strain. The recombinant protein was purified and digested with enterokinase to release the active peptide fragment, which was then evaluated for antimicrobial activity and stability. The lysine substitution led to an enhancement in broad-spectrum antimicrobial activity against a wide range of nosocomial pathogenic bacteria.</p>","PeriodicalId":9274,"journal":{"name":"Biotechnology and applied biochemistry","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Glycine-replaced epinecidin-1 variant bestows better stability and stronger antimicrobial activity against a range of nosocomial pathogenic bacteria.\",\"authors\":\"Sivakumar Jeyarajan, Ansu Susan Peter, Sukumar Ranjith, Aswathy Sathyan, Senbagam Duraisamy, Indira Kandasamy, Prahalathan Chidambaram, Anbarasu Kumarasamy\",\"doi\":\"10.1002/bab.2637\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Epinecidin-1 (epi-1), an antimicrobial peptide first identified in marine grouper fish, has multifunctional bioactivities. The present study aims to improve its therapeutic potential via structural modifications that could enhance its antimicrobial activity and stability. To achieve it, we replaced glycine and the first histidine in the parent epi-1 with lysine, which resulted in a peptide with a repeating KXXK motif and improved physiochemical properties related to antimicrobial activity. This modified peptide, referred to as glycine-to-lysine replaced-epi-1, also gained stability and a twofold increase in helical propensity. To produce the active peptide, overlap extension PCR was employed to generate the gene of GK-epi-1 via site-directed mutagenesis, which was then cloned into the pET-32a vector and expressed as a recombinant fusion protein in Escherichia coli C43 (DE3) strain. The recombinant protein was purified and digested with enterokinase to release the active peptide fragment, which was then evaluated for antimicrobial activity and stability. The lysine substitution led to an enhancement in broad-spectrum antimicrobial activity against a wide range of nosocomial pathogenic bacteria.</p>\",\"PeriodicalId\":9274,\"journal\":{\"name\":\"Biotechnology and applied biochemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology and applied biochemistry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/bab.2637\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and applied biochemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/bab.2637","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Glycine-replaced epinecidin-1 variant bestows better stability and stronger antimicrobial activity against a range of nosocomial pathogenic bacteria.
Epinecidin-1 (epi-1), an antimicrobial peptide first identified in marine grouper fish, has multifunctional bioactivities. The present study aims to improve its therapeutic potential via structural modifications that could enhance its antimicrobial activity and stability. To achieve it, we replaced glycine and the first histidine in the parent epi-1 with lysine, which resulted in a peptide with a repeating KXXK motif and improved physiochemical properties related to antimicrobial activity. This modified peptide, referred to as glycine-to-lysine replaced-epi-1, also gained stability and a twofold increase in helical propensity. To produce the active peptide, overlap extension PCR was employed to generate the gene of GK-epi-1 via site-directed mutagenesis, which was then cloned into the pET-32a vector and expressed as a recombinant fusion protein in Escherichia coli C43 (DE3) strain. The recombinant protein was purified and digested with enterokinase to release the active peptide fragment, which was then evaluated for antimicrobial activity and stability. The lysine substitution led to an enhancement in broad-spectrum antimicrobial activity against a wide range of nosocomial pathogenic bacteria.
期刊介绍:
Published since 1979, Biotechnology and Applied Biochemistry is dedicated to the rapid publication of high quality, significant research at the interface between life sciences and their technological exploitation.
The Editors will consider papers for publication based on their novelty and impact as well as their contribution to the advancement of medical biotechnology and industrial biotechnology, covering cutting-edge research in synthetic biology, systems biology, metabolic engineering, bioengineering, biomaterials, biosensing, and nano-biotechnology.