{"title":"青少年双歧杆菌 BAD_1527 基因编码 AXH-m 型 GH43_22 α-L-阿拉伯呋喃糖苷酶。","authors":"Walid Fathallah, Vladimír Puchart","doi":"10.1186/s13568-024-01738-9","DOIUrl":null,"url":null,"abstract":"<p><p>Bifidobacterium adolescentis gene BAD_1527 has previously been suggested to code for a β-xylosidase (Kobayashi et al., Mar Drugs 18:174, 2020). Our detailed investigation of the substrate specificity of the GH43_22 protein using a wide spectrum of natural and artificial substrates showed that the enzyme hydrolyzed neither linear xylooligosaccharides nor glucuronoxylan. Xylose was released only from the artificial 4-nitrophenyl β-D-xylopyranoside (1.58 mU/mg). The corresponding α-L-arabinofuranoside was by three orders of magnitude better substrate (2.17 U/mg). Arabinose was the only monosaccharide liberated from arabinoxylan and α-1,3- or α-1,2-singly arabinosylated xylooligosaccharides. Moreover, the enzyme efficiently debranched sugar beet arabinan and singly arabinosylated α-1,5-L-arabinooligosaccharides, although short linear α-1,5-L-arabinooligosaccharides were also slowly degraded. On the other hand, debranched arabinan, arabinogalactan as well as 2,3-doubly arabinosylated main chain residues of arabinan and arabinoxylan did not serve as substrates. Thus, the enzyme encoded by the BAD_1527 gene is a typical α-L-arabinofuranosidase of AXH-m specificity.</p>","PeriodicalId":7537,"journal":{"name":"AMB Express","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11264647/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Bifidobacterium adolescentis BAD_1527 gene encodes GH43_22 α-L-arabinofuranosidase of AXH-m type.\",\"authors\":\"Walid Fathallah, Vladimír Puchart\",\"doi\":\"10.1186/s13568-024-01738-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bifidobacterium adolescentis gene BAD_1527 has previously been suggested to code for a β-xylosidase (Kobayashi et al., Mar Drugs 18:174, 2020). Our detailed investigation of the substrate specificity of the GH43_22 protein using a wide spectrum of natural and artificial substrates showed that the enzyme hydrolyzed neither linear xylooligosaccharides nor glucuronoxylan. Xylose was released only from the artificial 4-nitrophenyl β-D-xylopyranoside (1.58 mU/mg). The corresponding α-L-arabinofuranoside was by three orders of magnitude better substrate (2.17 U/mg). Arabinose was the only monosaccharide liberated from arabinoxylan and α-1,3- or α-1,2-singly arabinosylated xylooligosaccharides. Moreover, the enzyme efficiently debranched sugar beet arabinan and singly arabinosylated α-1,5-L-arabinooligosaccharides, although short linear α-1,5-L-arabinooligosaccharides were also slowly degraded. On the other hand, debranched arabinan, arabinogalactan as well as 2,3-doubly arabinosylated main chain residues of arabinan and arabinoxylan did not serve as substrates. Thus, the enzyme encoded by the BAD_1527 gene is a typical α-L-arabinofuranosidase of AXH-m specificity.</p>\",\"PeriodicalId\":7537,\"journal\":{\"name\":\"AMB Express\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11264647/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AMB Express\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s13568-024-01738-9\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMB Express","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s13568-024-01738-9","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
The Bifidobacterium adolescentis BAD_1527 gene encodes GH43_22 α-L-arabinofuranosidase of AXH-m type.
Bifidobacterium adolescentis gene BAD_1527 has previously been suggested to code for a β-xylosidase (Kobayashi et al., Mar Drugs 18:174, 2020). Our detailed investigation of the substrate specificity of the GH43_22 protein using a wide spectrum of natural and artificial substrates showed that the enzyme hydrolyzed neither linear xylooligosaccharides nor glucuronoxylan. Xylose was released only from the artificial 4-nitrophenyl β-D-xylopyranoside (1.58 mU/mg). The corresponding α-L-arabinofuranoside was by three orders of magnitude better substrate (2.17 U/mg). Arabinose was the only monosaccharide liberated from arabinoxylan and α-1,3- or α-1,2-singly arabinosylated xylooligosaccharides. Moreover, the enzyme efficiently debranched sugar beet arabinan and singly arabinosylated α-1,5-L-arabinooligosaccharides, although short linear α-1,5-L-arabinooligosaccharides were also slowly degraded. On the other hand, debranched arabinan, arabinogalactan as well as 2,3-doubly arabinosylated main chain residues of arabinan and arabinoxylan did not serve as substrates. Thus, the enzyme encoded by the BAD_1527 gene is a typical α-L-arabinofuranosidase of AXH-m specificity.
期刊介绍:
AMB Express is a high quality journal that brings together research in the area of Applied and Industrial Microbiology with a particular interest in ''White Biotechnology'' and ''Red Biotechnology''. The emphasis is on processes employing microorganisms, eukaryotic cell cultures or enzymes for the biosynthesis, transformation and degradation of compounds. This includes fine and bulk chemicals, polymeric compounds and enzymes or other proteins. Downstream processes are also considered. Integrated processes combining biochemical and chemical processes are also published.