{"title":"含有萘分子的新型 1,2,4- 三唑衍生物作为选择性丁酰胆碱酯酶抑制剂:设计、合成和生物学评价。","authors":"Ebru Koçak Aslan, Aysima Sezer, Tuba Tüylü Küçükkılınç, Erhan Palaska","doi":"10.1002/ardp.202400406","DOIUrl":null,"url":null,"abstract":"<p>Butyrylcholinesterase (BChE) is considered a promising therapeutic target for treating Alzheimer's disease due to the increase in the levels and activity of BChE in the late stage of the disease. In this study, a series of novel 1,2,4-triazole derivatives bearing the naphthalene moiety linked to the benzothiazole, thiazole, and phenyl scaffolds via amid chain were designed and synthesized as potential and selective BChE inhibitors. The results of the inhibitory activity studies revealed that most of these compounds exhibited significant inhibitor potency on BChE. Compounds <b>35a</b> (0.025 ± 0.01 μM) and <b>37a</b> (0.035 ± 0.01 μM) displayed the most potent inhibitory activity, with excellent selectivity against BChE over acetylcholinesterase (SI<sub>BChE</sub>, 23,686 and 16,936, respectively) among the target compounds. The kinetics studies revealed that these compounds behaved with noncompetitive BChE inhibitors. Molecular docking studies indicated that <b>35a</b> and <b>37a</b> fit well into the active side of BChE. In addition, <b>35a</b> and <b>37a</b> also had the lowest cytotoxicity for human neuroblastoma cells (SH-SY5Y), potential antioxidant capacity, moderate inhibition potency on amyloid-β<sub>1-42</sub> aggregation, and significant neuroprotective effect against SH-SY5Y cell injury induced by H<sub>2</sub>O<sub>2</sub> and amyloid-β<sub>1-42</sub>. All results suggest that these compounds might be considered as promising new lead compounds in the drug discovery process for the treatment of late-stage Alzheimer's disease.</p>","PeriodicalId":128,"journal":{"name":"Archiv der Pharmazie","volume":"357 11","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ardp.202400406","citationCount":"0","resultStr":"{\"title\":\"Novel 1,2,4-triazole derivatives containing the naphthalene moiety as selective butyrylcholinesterase inhibitors: Design, synthesis, and biological evaluation\",\"authors\":\"Ebru Koçak Aslan, Aysima Sezer, Tuba Tüylü Küçükkılınç, Erhan Palaska\",\"doi\":\"10.1002/ardp.202400406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Butyrylcholinesterase (BChE) is considered a promising therapeutic target for treating Alzheimer's disease due to the increase in the levels and activity of BChE in the late stage of the disease. In this study, a series of novel 1,2,4-triazole derivatives bearing the naphthalene moiety linked to the benzothiazole, thiazole, and phenyl scaffolds via amid chain were designed and synthesized as potential and selective BChE inhibitors. The results of the inhibitory activity studies revealed that most of these compounds exhibited significant inhibitor potency on BChE. Compounds <b>35a</b> (0.025 ± 0.01 μM) and <b>37a</b> (0.035 ± 0.01 μM) displayed the most potent inhibitory activity, with excellent selectivity against BChE over acetylcholinesterase (SI<sub>BChE</sub>, 23,686 and 16,936, respectively) among the target compounds. The kinetics studies revealed that these compounds behaved with noncompetitive BChE inhibitors. Molecular docking studies indicated that <b>35a</b> and <b>37a</b> fit well into the active side of BChE. In addition, <b>35a</b> and <b>37a</b> also had the lowest cytotoxicity for human neuroblastoma cells (SH-SY5Y), potential antioxidant capacity, moderate inhibition potency on amyloid-β<sub>1-42</sub> aggregation, and significant neuroprotective effect against SH-SY5Y cell injury induced by H<sub>2</sub>O<sub>2</sub> and amyloid-β<sub>1-42</sub>. All results suggest that these compounds might be considered as promising new lead compounds in the drug discovery process for the treatment of late-stage Alzheimer's disease.</p>\",\"PeriodicalId\":128,\"journal\":{\"name\":\"Archiv der Pharmazie\",\"volume\":\"357 11\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ardp.202400406\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archiv der Pharmazie\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ardp.202400406\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Pharmazie","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ardp.202400406","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Novel 1,2,4-triazole derivatives containing the naphthalene moiety as selective butyrylcholinesterase inhibitors: Design, synthesis, and biological evaluation
Butyrylcholinesterase (BChE) is considered a promising therapeutic target for treating Alzheimer's disease due to the increase in the levels and activity of BChE in the late stage of the disease. In this study, a series of novel 1,2,4-triazole derivatives bearing the naphthalene moiety linked to the benzothiazole, thiazole, and phenyl scaffolds via amid chain were designed and synthesized as potential and selective BChE inhibitors. The results of the inhibitory activity studies revealed that most of these compounds exhibited significant inhibitor potency on BChE. Compounds 35a (0.025 ± 0.01 μM) and 37a (0.035 ± 0.01 μM) displayed the most potent inhibitory activity, with excellent selectivity against BChE over acetylcholinesterase (SIBChE, 23,686 and 16,936, respectively) among the target compounds. The kinetics studies revealed that these compounds behaved with noncompetitive BChE inhibitors. Molecular docking studies indicated that 35a and 37a fit well into the active side of BChE. In addition, 35a and 37a also had the lowest cytotoxicity for human neuroblastoma cells (SH-SY5Y), potential antioxidant capacity, moderate inhibition potency on amyloid-β1-42 aggregation, and significant neuroprotective effect against SH-SY5Y cell injury induced by H2O2 and amyloid-β1-42. All results suggest that these compounds might be considered as promising new lead compounds in the drug discovery process for the treatment of late-stage Alzheimer's disease.
期刊介绍:
Archiv der Pharmazie - Chemistry in Life Sciences is an international journal devoted to research and development in all fields of pharmaceutical and medicinal chemistry. Emphasis is put on papers combining synthetic organic chemistry, structural biology, molecular modelling, bioorganic chemistry, natural products chemistry, biochemistry or analytical methods with pharmaceutical or medicinal aspects such as biological activity. The focus of this journal is put on original research papers, but other scientifically valuable contributions (e.g. reviews, minireviews, highlights, symposia contributions, discussions, and essays) are also welcome.