高分辨率神经网络展示了沿海地区强烈的二氧化碳源汇并置现象

IF 3.3 2区 地球科学 Q1 OCEANOGRAPHY
P. J. Duke, R. C. Hamme, D. Ianson, P. Landschützer, N. C. Swart, P. A. Covert
{"title":"高分辨率神经网络展示了沿海地区强烈的二氧化碳源汇并置现象","authors":"P. J. Duke,&nbsp;R. C. Hamme,&nbsp;D. Ianson,&nbsp;P. Landschützer,&nbsp;N. C. Swart,&nbsp;P. A. Covert","doi":"10.1029/2024JC021134","DOIUrl":null,"url":null,"abstract":"<p>The role of coastal oceans in regulating atmospheric carbon dioxide remains poorly quantified and understood. Here, we use a two-step neural network approach to generate estimates from sparse observational data in the coastal Northeast Pacific Ocean at an unprecedented spatial resolution of 1/12° with coverage in the nearshore (0–25 km offshore). We compiled partial pressure of carbon dioxide (<i>p</i>CO<sub>2</sub>) observations as well as a range of predictor variables including satellite-based and physical oceanographic reanalysis products. With the predictor variables representing processes affecting <i>p</i>CO<sub>2</sub>, we created non-linear relationships to interpolate observations from 1998 to 2019. Compared to in situ shipboard and mooring observations, our coastal <i>p</i>CO<sub>2</sub> product captures broad spatial patterns and seasonal cycle variability well. A sensitivity analysis identifies that the parameters responsible for the neural network's ability to capture regional <i>p</i>CO<sub>2</sub> variability are associated with mechanistic processes, including mixed layer deepening, mesoscale eddies, and gyre upwelling. Using wind speed and atmospheric CO<sub>2</sub>, we calculated air-sea CO<sub>2</sub> fluxes. We report an anticorrelation between annual air-sea CO<sub>2</sub> flux and its seasonal amplitude with the relationship driven by circulation, opposing seasonal upwelling/relaxation versus downwelling, and the effects of winter mixing and primary productivity. We show that the inclusion of nearshore net outgassing fluxes lowers the overall regional net flux. Overall, our results suggest that the region is a net sink (−0.7 mol m<sup>−2</sup> yr<sup>−1</sup>) for atmospheric CO<sub>2</sub> with trends indicating increasing oceanic uptake due to strong connectivity to subsurface waters.</p>","PeriodicalId":54340,"journal":{"name":"Journal of Geophysical Research-Oceans","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JC021134","citationCount":"0","resultStr":"{\"title\":\"High-Resolution Neural Network Demonstrates Strong CO2 Source-Sink Juxtaposition in the Coastal Zone\",\"authors\":\"P. J. Duke,&nbsp;R. C. Hamme,&nbsp;D. Ianson,&nbsp;P. Landschützer,&nbsp;N. C. Swart,&nbsp;P. A. Covert\",\"doi\":\"10.1029/2024JC021134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The role of coastal oceans in regulating atmospheric carbon dioxide remains poorly quantified and understood. Here, we use a two-step neural network approach to generate estimates from sparse observational data in the coastal Northeast Pacific Ocean at an unprecedented spatial resolution of 1/12° with coverage in the nearshore (0–25 km offshore). We compiled partial pressure of carbon dioxide (<i>p</i>CO<sub>2</sub>) observations as well as a range of predictor variables including satellite-based and physical oceanographic reanalysis products. With the predictor variables representing processes affecting <i>p</i>CO<sub>2</sub>, we created non-linear relationships to interpolate observations from 1998 to 2019. Compared to in situ shipboard and mooring observations, our coastal <i>p</i>CO<sub>2</sub> product captures broad spatial patterns and seasonal cycle variability well. A sensitivity analysis identifies that the parameters responsible for the neural network's ability to capture regional <i>p</i>CO<sub>2</sub> variability are associated with mechanistic processes, including mixed layer deepening, mesoscale eddies, and gyre upwelling. Using wind speed and atmospheric CO<sub>2</sub>, we calculated air-sea CO<sub>2</sub> fluxes. We report an anticorrelation between annual air-sea CO<sub>2</sub> flux and its seasonal amplitude with the relationship driven by circulation, opposing seasonal upwelling/relaxation versus downwelling, and the effects of winter mixing and primary productivity. We show that the inclusion of nearshore net outgassing fluxes lowers the overall regional net flux. Overall, our results suggest that the region is a net sink (−0.7 mol m<sup>−2</sup> yr<sup>−1</sup>) for atmospheric CO<sub>2</sub> with trends indicating increasing oceanic uptake due to strong connectivity to subsurface waters.</p>\",\"PeriodicalId\":54340,\"journal\":{\"name\":\"Journal of Geophysical Research-Oceans\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JC021134\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research-Oceans\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024JC021134\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OCEANOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research-Oceans","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JC021134","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0

摘要

沿岸海洋在调节大气二氧化碳方面所起的作用还没有得到很好的量化和理解。在这里,我们采用两步神经网络方法,以前所未有的 1/12° 空间分辨率,从东北太平洋沿岸稀少的观测数据中得出近岸(离岸 0-25 公里)的估算值。我们汇编了二氧化碳分压(pCO2)观测数据以及一系列预测变量,包括卫星和物理海洋学再分析产品。由于预测变量代表了影响 pCO2 的过程,我们建立了非线性关系来插值 1998 年至 2019 年的观测数据。与原位船载观测和系泊观测相比,我们的沿岸 pCO2 产品能很好地捕捉广泛的空间模式和季节周期变化。敏感性分析表明,神经网络捕捉区域 pCO2 变化能力的参数与机理过程有关,包括混合层加深、中尺度漩涡和回旋上升流。利用风速和大气二氧化碳,我们计算了海气二氧化碳通量。我们报告了年海气二氧化碳通量与其季节振幅之间的反相关关系,这种关系由环流、对立的季节性上涌/舒缓与下沉以及冬季混合和初级生产力的影响所驱动。我们的研究表明,将近岸净脱气通量包括在内会降低整个区域的净通量。总体而言,我们的研究结果表明,该地区是大气二氧化碳的净吸收汇(-0.7 摩尔 m-2 yr-1),其趋势表明,由于与地下水的紧密联系,海洋对二氧化碳的吸收不断增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

High-Resolution Neural Network Demonstrates Strong CO2 Source-Sink Juxtaposition in the Coastal Zone

High-Resolution Neural Network Demonstrates Strong CO2 Source-Sink Juxtaposition in the Coastal Zone

The role of coastal oceans in regulating atmospheric carbon dioxide remains poorly quantified and understood. Here, we use a two-step neural network approach to generate estimates from sparse observational data in the coastal Northeast Pacific Ocean at an unprecedented spatial resolution of 1/12° with coverage in the nearshore (0–25 km offshore). We compiled partial pressure of carbon dioxide (pCO2) observations as well as a range of predictor variables including satellite-based and physical oceanographic reanalysis products. With the predictor variables representing processes affecting pCO2, we created non-linear relationships to interpolate observations from 1998 to 2019. Compared to in situ shipboard and mooring observations, our coastal pCO2 product captures broad spatial patterns and seasonal cycle variability well. A sensitivity analysis identifies that the parameters responsible for the neural network's ability to capture regional pCO2 variability are associated with mechanistic processes, including mixed layer deepening, mesoscale eddies, and gyre upwelling. Using wind speed and atmospheric CO2, we calculated air-sea CO2 fluxes. We report an anticorrelation between annual air-sea CO2 flux and its seasonal amplitude with the relationship driven by circulation, opposing seasonal upwelling/relaxation versus downwelling, and the effects of winter mixing and primary productivity. We show that the inclusion of nearshore net outgassing fluxes lowers the overall regional net flux. Overall, our results suggest that the region is a net sink (−0.7 mol m−2 yr−1) for atmospheric CO2 with trends indicating increasing oceanic uptake due to strong connectivity to subsurface waters.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geophysical Research-Oceans
Journal of Geophysical Research-Oceans Earth and Planetary Sciences-Oceanography
CiteScore
7.00
自引率
13.90%
发文量
429
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信