Musa N. Hamza , Mohammad Tariqul Islam , Slawomir Koziel
{"title":"利用基于超材料 AMC 的天线阵列实现无创乳腺癌和脑癌诊断的先进传感器","authors":"Musa N. Hamza , Mohammad Tariqul Islam , Slawomir Koziel","doi":"10.1016/j.jestch.2024.101779","DOIUrl":null,"url":null,"abstract":"<div><p>Microwave imaging techniques can identify abnormal cells in early development stages. This study introduces a microstrip patch antenna coupled with artificial magnetic conductor (AMC) to realize improved sensor for non-invasive (early-stage) breast cancer and brain cancer diagnosis. The frequency selectivity of the proposed antenna has been increased by the presence of AMC by creating an additional resonance at 2.276 GHz associated with peak gain of 8.15 dBi and 10.02 dBi, with and without AMC, respectively. High precision and high-quality imaging in the field of medical diagnostics are ensured by the directive radiation pattern of the sensor, emitted from the center of the sensor’s front surface. The antenna has been manufactured and experimentally validated with measurement results being in good agreement with the full-wave simulations. In particular, the measured broadside gain at the operating frequency is 11.7 dBi. The presented structure has been incorporated in the microwave imaging system for breast and brain cancer identification. Extensive simulation studies corroborate its suitability for the task based on the analysis of multiple scenarios of tumor detection. Furthermore, our antenna has been favorably compared to state-of-the-art designs reported in the literature showing its competitive performance, especially in terms of size, impedance matching bandwidth, and gain trade-offs.</p></div>","PeriodicalId":48609,"journal":{"name":"Engineering Science and Technology-An International Journal-Jestech","volume":"56 ","pages":"Article 101779"},"PeriodicalIF":5.1000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2215098624001654/pdfft?md5=a64766502d65240b9444c39e37ee1493&pid=1-s2.0-S2215098624001654-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Advanced sensor for non-invasive breast cancer and brain cancer diagnosis using antenna array with metamaterial-based AMC\",\"authors\":\"Musa N. Hamza , Mohammad Tariqul Islam , Slawomir Koziel\",\"doi\":\"10.1016/j.jestch.2024.101779\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Microwave imaging techniques can identify abnormal cells in early development stages. This study introduces a microstrip patch antenna coupled with artificial magnetic conductor (AMC) to realize improved sensor for non-invasive (early-stage) breast cancer and brain cancer diagnosis. The frequency selectivity of the proposed antenna has been increased by the presence of AMC by creating an additional resonance at 2.276 GHz associated with peak gain of 8.15 dBi and 10.02 dBi, with and without AMC, respectively. High precision and high-quality imaging in the field of medical diagnostics are ensured by the directive radiation pattern of the sensor, emitted from the center of the sensor’s front surface. The antenna has been manufactured and experimentally validated with measurement results being in good agreement with the full-wave simulations. In particular, the measured broadside gain at the operating frequency is 11.7 dBi. The presented structure has been incorporated in the microwave imaging system for breast and brain cancer identification. Extensive simulation studies corroborate its suitability for the task based on the analysis of multiple scenarios of tumor detection. Furthermore, our antenna has been favorably compared to state-of-the-art designs reported in the literature showing its competitive performance, especially in terms of size, impedance matching bandwidth, and gain trade-offs.</p></div>\",\"PeriodicalId\":48609,\"journal\":{\"name\":\"Engineering Science and Technology-An International Journal-Jestech\",\"volume\":\"56 \",\"pages\":\"Article 101779\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2215098624001654/pdfft?md5=a64766502d65240b9444c39e37ee1493&pid=1-s2.0-S2215098624001654-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Science and Technology-An International Journal-Jestech\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2215098624001654\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Science and Technology-An International Journal-Jestech","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215098624001654","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Advanced sensor for non-invasive breast cancer and brain cancer diagnosis using antenna array with metamaterial-based AMC
Microwave imaging techniques can identify abnormal cells in early development stages. This study introduces a microstrip patch antenna coupled with artificial magnetic conductor (AMC) to realize improved sensor for non-invasive (early-stage) breast cancer and brain cancer diagnosis. The frequency selectivity of the proposed antenna has been increased by the presence of AMC by creating an additional resonance at 2.276 GHz associated with peak gain of 8.15 dBi and 10.02 dBi, with and without AMC, respectively. High precision and high-quality imaging in the field of medical diagnostics are ensured by the directive radiation pattern of the sensor, emitted from the center of the sensor’s front surface. The antenna has been manufactured and experimentally validated with measurement results being in good agreement with the full-wave simulations. In particular, the measured broadside gain at the operating frequency is 11.7 dBi. The presented structure has been incorporated in the microwave imaging system for breast and brain cancer identification. Extensive simulation studies corroborate its suitability for the task based on the analysis of multiple scenarios of tumor detection. Furthermore, our antenna has been favorably compared to state-of-the-art designs reported in the literature showing its competitive performance, especially in terms of size, impedance matching bandwidth, and gain trade-offs.
期刊介绍:
Engineering Science and Technology, an International Journal (JESTECH) (formerly Technology), a peer-reviewed quarterly engineering journal, publishes both theoretical and experimental high quality papers of permanent interest, not previously published in journals, in the field of engineering and applied science which aims to promote the theory and practice of technology and engineering. In addition to peer-reviewed original research papers, the Editorial Board welcomes original research reports, state-of-the-art reviews and communications in the broadly defined field of engineering science and technology.
The scope of JESTECH includes a wide spectrum of subjects including:
-Electrical/Electronics and Computer Engineering (Biomedical Engineering and Instrumentation; Coding, Cryptography, and Information Protection; Communications, Networks, Mobile Computing and Distributed Systems; Compilers and Operating Systems; Computer Architecture, Parallel Processing, and Dependability; Computer Vision and Robotics; Control Theory; Electromagnetic Waves, Microwave Techniques and Antennas; Embedded Systems; Integrated Circuits, VLSI Design, Testing, and CAD; Microelectromechanical Systems; Microelectronics, and Electronic Devices and Circuits; Power, Energy and Energy Conversion Systems; Signal, Image, and Speech Processing)
-Mechanical and Civil Engineering (Automotive Technologies; Biomechanics; Construction Materials; Design and Manufacturing; Dynamics and Control; Energy Generation, Utilization, Conversion, and Storage; Fluid Mechanics and Hydraulics; Heat and Mass Transfer; Micro-Nano Sciences; Renewable and Sustainable Energy Technologies; Robotics and Mechatronics; Solid Mechanics and Structure; Thermal Sciences)
-Metallurgical and Materials Engineering (Advanced Materials Science; Biomaterials; Ceramic and Inorgnanic Materials; Electronic-Magnetic Materials; Energy and Environment; Materials Characterizastion; Metallurgy; Polymers and Nanocomposites)