利用生物电化学传感器建立碳呼吸的机理和数据驱动模型

IF 7.1 2区 工程技术 Q1 BIOCHEMICAL RESEARCH METHODS
Rishabh Puri , Seyed A Emaminejad , Roland D Cusick
{"title":"利用生物电化学传感器建立碳呼吸的机理和数据驱动模型","authors":"Rishabh Puri ,&nbsp;Seyed A Emaminejad ,&nbsp;Roland D Cusick","doi":"10.1016/j.copbio.2024.103173","DOIUrl":null,"url":null,"abstract":"<div><p>Bioelectrochemical sensor (BES) technologies have been developed to measure soluble carbon concentrations in wastewater. However, architectures and analytical methods developed in controlled laboratory environments fail to predict BES behavior during field deployments at water resource recovery facilities (WRRFs). Here, we examine the possibilities and obstacles associated with integrating BESs into environmental sensing networks and machine learning algorithms to monitor the biodegradable carbon dynamics and microbial metabolism at WRRFs. This approach highlights the potential of BESs to provide real-time insights into full-scale biodegradable carbon consumption across WRRFs.</p></div>","PeriodicalId":10833,"journal":{"name":"Current opinion in biotechnology","volume":null,"pages":null},"PeriodicalIF":7.1000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0958166924001095/pdfft?md5=cc786865a004b1011d3266ae775abc7a&pid=1-s2.0-S0958166924001095-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Mechanistic and data-driven modeling of carbon respiration with bio-electrochemical sensors\",\"authors\":\"Rishabh Puri ,&nbsp;Seyed A Emaminejad ,&nbsp;Roland D Cusick\",\"doi\":\"10.1016/j.copbio.2024.103173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Bioelectrochemical sensor (BES) technologies have been developed to measure soluble carbon concentrations in wastewater. However, architectures and analytical methods developed in controlled laboratory environments fail to predict BES behavior during field deployments at water resource recovery facilities (WRRFs). Here, we examine the possibilities and obstacles associated with integrating BESs into environmental sensing networks and machine learning algorithms to monitor the biodegradable carbon dynamics and microbial metabolism at WRRFs. This approach highlights the potential of BESs to provide real-time insights into full-scale biodegradable carbon consumption across WRRFs.</p></div>\",\"PeriodicalId\":10833,\"journal\":{\"name\":\"Current opinion in biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0958166924001095/pdfft?md5=cc786865a004b1011d3266ae775abc7a&pid=1-s2.0-S0958166924001095-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current opinion in biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0958166924001095\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in biotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0958166924001095","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

生物电化学传感器 (BES) 技术是为测量废水中的可溶性碳浓度而开发的。然而,在受控实验室环境中开发的架构和分析方法无法预测生物电化学传感器在水资源回收设施(WRRF)现场部署时的行为。在此,我们探讨了将 BES 集成到环境传感网络和机器学习算法中以监测水资源回收设施中的生物降解碳动态和微生物新陈代谢的可能性和障碍。这种方法凸显了 BES 在实时了解整个 WRRF 的生物可降解碳消耗情况方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mechanistic and data-driven modeling of carbon respiration with bio-electrochemical sensors

Bioelectrochemical sensor (BES) technologies have been developed to measure soluble carbon concentrations in wastewater. However, architectures and analytical methods developed in controlled laboratory environments fail to predict BES behavior during field deployments at water resource recovery facilities (WRRFs). Here, we examine the possibilities and obstacles associated with integrating BESs into environmental sensing networks and machine learning algorithms to monitor the biodegradable carbon dynamics and microbial metabolism at WRRFs. This approach highlights the potential of BESs to provide real-time insights into full-scale biodegradable carbon consumption across WRRFs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current opinion in biotechnology
Current opinion in biotechnology 工程技术-生化研究方法
CiteScore
16.20
自引率
2.60%
发文量
226
审稿时长
4-8 weeks
期刊介绍: Current Opinion in Biotechnology (COBIOT) is renowned for publishing authoritative, comprehensive, and systematic reviews. By offering clear and readable syntheses of current advances in biotechnology, COBIOT assists specialists in staying updated on the latest developments in the field. Expert authors annotate the most noteworthy papers from the vast array of information available today, providing readers with valuable insights and saving them time. As part of the Current Opinion and Research (CO+RE) suite of journals, COBIOT is accompanied by the open-access primary research journal, Current Research in Biotechnology (CRBIOT). Leveraging the editorial excellence, high impact, and global reach of the Current Opinion legacy, CO+RE journals ensure they are widely read resources integral to scientists' workflows. COBIOT is organized into themed sections, each reviewed once a year. These themes cover various areas of biotechnology, including analytical biotechnology, plant biotechnology, food biotechnology, energy biotechnology, environmental biotechnology, systems biology, nanobiotechnology, tissue, cell, and pathway engineering, chemical biotechnology, and pharmaceutical biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信