基于遗传神经网络的管道 ADC 背景校准方法

IF 1.9 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Long Li , Yongsheng Yin , Jiashen Li , Yukun Song , Honghui Deng , Hongmei Chen , Luotian Wu , Muqi Li
{"title":"基于遗传神经网络的管道 ADC 背景校准方法","authors":"Long Li ,&nbsp;Yongsheng Yin ,&nbsp;Jiashen Li ,&nbsp;Yukun Song ,&nbsp;Honghui Deng ,&nbsp;Hongmei Chen ,&nbsp;Luotian Wu ,&nbsp;Muqi Li","doi":"10.1016/j.mejo.2024.106317","DOIUrl":null,"url":null,"abstract":"<div><p>This article presents a pipeline analog-to-digital converter (ADC) background calibration method that combines genetic algorithm (GA) and neural network (NN) algorithm. The proposed method uses ADC outputs or individual stage sub-ADC outputs for NN training, employs GA for global optimization of the NN's initial setup to avoid local optima traps, and utilizes a parallel pipeline architecture to create a high-throughput calibration circuit with optimized multiply-accumulator (MAC) to minimize resource consumption. Through simulation on a 6-stage 14-bit pipelined ADC model, the proposed method demonstrated superiority over traditional calibration techniques and other NN-based calibration strategies. Specifically, after calibration, the signal-to-noise ratio (SNDR), spurious-free dynamic range (SFDR), and effective number of bits (ENOB) are significantly improved from 57.72 dB, 59.77 dB, and 8.79 bits to 104.61 dB, 152.64 dB, and 17.08 bits, respectively.</p></div>","PeriodicalId":49818,"journal":{"name":"Microelectronics Journal","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genetic neural network based background calibration method for pipeline ADC\",\"authors\":\"Long Li ,&nbsp;Yongsheng Yin ,&nbsp;Jiashen Li ,&nbsp;Yukun Song ,&nbsp;Honghui Deng ,&nbsp;Hongmei Chen ,&nbsp;Luotian Wu ,&nbsp;Muqi Li\",\"doi\":\"10.1016/j.mejo.2024.106317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This article presents a pipeline analog-to-digital converter (ADC) background calibration method that combines genetic algorithm (GA) and neural network (NN) algorithm. The proposed method uses ADC outputs or individual stage sub-ADC outputs for NN training, employs GA for global optimization of the NN's initial setup to avoid local optima traps, and utilizes a parallel pipeline architecture to create a high-throughput calibration circuit with optimized multiply-accumulator (MAC) to minimize resource consumption. Through simulation on a 6-stage 14-bit pipelined ADC model, the proposed method demonstrated superiority over traditional calibration techniques and other NN-based calibration strategies. Specifically, after calibration, the signal-to-noise ratio (SNDR), spurious-free dynamic range (SFDR), and effective number of bits (ENOB) are significantly improved from 57.72 dB, 59.77 dB, and 8.79 bits to 104.61 dB, 152.64 dB, and 17.08 bits, respectively.</p></div>\",\"PeriodicalId\":49818,\"journal\":{\"name\":\"Microelectronics Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microelectronics Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1879239124000213\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronics Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1879239124000213","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种结合遗传算法(GA)和神经网络(NN)算法的流水线模数转换器(ADC)背景校准方法。该方法使用 ADC 输出或单级子 ADC 输出进行 NN 训练,利用 GA 对 NN 的初始设置进行全局优化以避免局部最优陷阱,并利用并行流水线架构创建高吞吐量校准电路,同时优化乘法累加器 (MAC),以最大限度地减少资源消耗。通过在一个 6 级 14 位流水线 ADC 模型上进行仿真,所提出的方法证明优于传统校准技术和其他基于 NN 的校准策略。具体来说,校准后的信噪比 (SNDR)、无杂散动态范围 (SFDR) 和有效位数 (ENOB) 分别从 57.72 dB、59.77 dB 和 8.79 位显著提高到 104.61 dB、152.64 dB 和 17.08 位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Genetic neural network based background calibration method for pipeline ADC

This article presents a pipeline analog-to-digital converter (ADC) background calibration method that combines genetic algorithm (GA) and neural network (NN) algorithm. The proposed method uses ADC outputs or individual stage sub-ADC outputs for NN training, employs GA for global optimization of the NN's initial setup to avoid local optima traps, and utilizes a parallel pipeline architecture to create a high-throughput calibration circuit with optimized multiply-accumulator (MAC) to minimize resource consumption. Through simulation on a 6-stage 14-bit pipelined ADC model, the proposed method demonstrated superiority over traditional calibration techniques and other NN-based calibration strategies. Specifically, after calibration, the signal-to-noise ratio (SNDR), spurious-free dynamic range (SFDR), and effective number of bits (ENOB) are significantly improved from 57.72 dB, 59.77 dB, and 8.79 bits to 104.61 dB, 152.64 dB, and 17.08 bits, respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microelectronics Journal
Microelectronics Journal 工程技术-工程:电子与电气
CiteScore
4.00
自引率
27.30%
发文量
222
审稿时长
43 days
期刊介绍: Published since 1969, the Microelectronics Journal is an international forum for the dissemination of research and applications of microelectronic systems, circuits, and emerging technologies. Papers published in the Microelectronics Journal have undergone peer review to ensure originality, relevance, and timeliness. The journal thus provides a worldwide, regular, and comprehensive update on microelectronic circuits and systems. The Microelectronics Journal invites papers describing significant research and applications in all of the areas listed below. Comprehensive review/survey papers covering recent developments will also be considered. The Microelectronics Journal covers circuits and systems. This topic includes but is not limited to: Analog, digital, mixed, and RF circuits and related design methodologies; Logic, architectural, and system level synthesis; Testing, design for testability, built-in self-test; Area, power, and thermal analysis and design; Mixed-domain simulation and design; Embedded systems; Non-von Neumann computing and related technologies and circuits; Design and test of high complexity systems integration; SoC, NoC, SIP, and NIP design and test; 3-D integration design and analysis; Emerging device technologies and circuits, such as FinFETs, SETs, spintronics, SFQ, MTJ, etc. Application aspects such as signal and image processing including circuits for cryptography, sensors, and actuators including sensor networks, reliability and quality issues, and economic models are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信