利用临床机器学习模型识别 105 名中风后患者与跌倒相关的最佳平衡因素和机器人辅助步态训练属性。

IF 1.7 4区 医学 Q3 CLINICAL NEUROLOGY
Heejun Kim, Jiwon Shin, Yunhwan Kim, Yongseok Lee, Joshua Sung H You
{"title":"利用临床机器学习模型识别 105 名中风后患者与跌倒相关的最佳平衡因素和机器人辅助步态训练属性。","authors":"Heejun Kim, Jiwon Shin, Yunhwan Kim, Yongseok Lee, Joshua Sung H You","doi":"10.3233/NRE-240116","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Despite the promising effects of robot-assisted gait training (RAGT) on balance and gait in post-stroke rehabilitation, the optimal predictors of fall-related balance and effective RAGT attributes remain unclear in post-stroke patients at a high risk of fall.</p><p><strong>Objective: </strong>We aimed to determine the most accurate clinical machine learning (ML) algorithm for predicting fall-related balance factors and identifying RAGT attributes.</p><p><strong>Methods: </strong>We applied five ML algorithms- logistic regression, random forest, decision tree, support vector machine (SVM), and extreme gradient boosting (XGboost)- to a dataset of 105 post-stroke patients undergoing RAGT. The variables included the Berg Balance Scale score, walking speed, steps, hip and knee active torques, functional ambulation categories, Fugl- Meyer assessment (FMA), the Korean version of the Modified Barthel Index, and fall history.</p><p><strong>Results: </strong>The random forest algorithm excelled (receiver operating characteristic area under the curve; AUC = 0.91) in predicting balance improvement, outperforming the SVM (AUC = 0.76) and XGboost (AUC = 0.71). Key determinants identified were knee active torque, age, step count, number of RAGT sessions, FMA, and hip torque.</p><p><strong>Conclusion: </strong>The random forest algorithm was the best prediction model for identifying fall-related balance and RAGT determinants, highlighting the importance of key factors for successful RAGT outcome performance in fall-related balance improvement.</p>","PeriodicalId":19717,"journal":{"name":"NeuroRehabilitation","volume":" ","pages":"1-10"},"PeriodicalIF":1.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identifying best fall-related balance factors and robotic-assisted gait training attributes in 105 post-stroke patients using clinical machine learning models.\",\"authors\":\"Heejun Kim, Jiwon Shin, Yunhwan Kim, Yongseok Lee, Joshua Sung H You\",\"doi\":\"10.3233/NRE-240116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Despite the promising effects of robot-assisted gait training (RAGT) on balance and gait in post-stroke rehabilitation, the optimal predictors of fall-related balance and effective RAGT attributes remain unclear in post-stroke patients at a high risk of fall.</p><p><strong>Objective: </strong>We aimed to determine the most accurate clinical machine learning (ML) algorithm for predicting fall-related balance factors and identifying RAGT attributes.</p><p><strong>Methods: </strong>We applied five ML algorithms- logistic regression, random forest, decision tree, support vector machine (SVM), and extreme gradient boosting (XGboost)- to a dataset of 105 post-stroke patients undergoing RAGT. The variables included the Berg Balance Scale score, walking speed, steps, hip and knee active torques, functional ambulation categories, Fugl- Meyer assessment (FMA), the Korean version of the Modified Barthel Index, and fall history.</p><p><strong>Results: </strong>The random forest algorithm excelled (receiver operating characteristic area under the curve; AUC = 0.91) in predicting balance improvement, outperforming the SVM (AUC = 0.76) and XGboost (AUC = 0.71). Key determinants identified were knee active torque, age, step count, number of RAGT sessions, FMA, and hip torque.</p><p><strong>Conclusion: </strong>The random forest algorithm was the best prediction model for identifying fall-related balance and RAGT determinants, highlighting the importance of key factors for successful RAGT outcome performance in fall-related balance improvement.</p>\",\"PeriodicalId\":19717,\"journal\":{\"name\":\"NeuroRehabilitation\",\"volume\":\" \",\"pages\":\"1-10\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NeuroRehabilitation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3233/NRE-240116\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroRehabilitation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3233/NRE-240116","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:尽管机器人辅助步态训练(RAGT)对中风后康复中的平衡和步态具有良好的效果,但对于高跌倒风险的中风后患者来说,跌倒相关平衡的最佳预测因素和有效的RAGT属性仍不清楚:我们旨在确定最准确的临床机器学习(ML)算法,以预测与跌倒相关的平衡因素并确定 RAGT 属性:我们将逻辑回归、随机森林、决策树、支持向量机(SVM)和极梯度提升(XGboost)这五种 ML 算法应用于接受 RAGT 的 105 名中风后患者的数据集。变量包括Berg平衡量表评分、行走速度、步数、髋关节和膝关节活动扭矩、功能性行走类别、Fugl- Meyer评估(FMA)、韩国版改良Barthel指数和跌倒史:随机森林算法在预测平衡改善方面表现出色(曲线下接收操作特征面积;AUC = 0.91),优于 SVM(AUC = 0.76)和 XGboost(AUC = 0.71)。主要决定因素包括膝关节活动扭矩、年龄、步数、RAGT 训练次数、FMA 和髋关节扭矩:随机森林算法是确定与跌倒有关的平衡和 RAGT 决定因素的最佳预测模型,突出了 RAGT 成功改善与跌倒有关的平衡的关键因素的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identifying best fall-related balance factors and robotic-assisted gait training attributes in 105 post-stroke patients using clinical machine learning models.

Background: Despite the promising effects of robot-assisted gait training (RAGT) on balance and gait in post-stroke rehabilitation, the optimal predictors of fall-related balance and effective RAGT attributes remain unclear in post-stroke patients at a high risk of fall.

Objective: We aimed to determine the most accurate clinical machine learning (ML) algorithm for predicting fall-related balance factors and identifying RAGT attributes.

Methods: We applied five ML algorithms- logistic regression, random forest, decision tree, support vector machine (SVM), and extreme gradient boosting (XGboost)- to a dataset of 105 post-stroke patients undergoing RAGT. The variables included the Berg Balance Scale score, walking speed, steps, hip and knee active torques, functional ambulation categories, Fugl- Meyer assessment (FMA), the Korean version of the Modified Barthel Index, and fall history.

Results: The random forest algorithm excelled (receiver operating characteristic area under the curve; AUC = 0.91) in predicting balance improvement, outperforming the SVM (AUC = 0.76) and XGboost (AUC = 0.71). Key determinants identified were knee active torque, age, step count, number of RAGT sessions, FMA, and hip torque.

Conclusion: The random forest algorithm was the best prediction model for identifying fall-related balance and RAGT determinants, highlighting the importance of key factors for successful RAGT outcome performance in fall-related balance improvement.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
NeuroRehabilitation
NeuroRehabilitation CLINICAL NEUROLOGY-REHABILITATION
CiteScore
3.20
自引率
0.00%
发文量
178
审稿时长
6-12 weeks
期刊介绍: NeuroRehabilitation, an international, interdisciplinary, peer-reviewed journal, publishes manuscripts focused on scientifically based, practical information relevant to all aspects of neurologic rehabilitation. We publish unsolicited papers detailing original work/research that covers the full life span and range of neurological disabilities including stroke, spinal cord injury, traumatic brain injury, neuromuscular disease and other neurological disorders. We also publish thematically organized issues that focus on specific clinical disorders, types of therapy and age groups. Proposals for thematic issues and suggestions for issue editors are welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信