{"title":"大肠杆菌肠杆菌素生物合成酶 EntC 和 EntB 之间存在同种异构体通道的证据。","authors":"Xue Bin, Peter D Pawelek","doi":"10.1002/pro.5122","DOIUrl":null,"url":null,"abstract":"<p><p>Enterobactin is a high-affinity iron chelator produced and secreted by Escherichia coli and Salmonella typhimurium to scavenge scarce extracellular Fe<sup>3+</sup> as a micronutrient. EntC and EntB are the first two enzymes in the enterobactin biosynthetic pathway. Isochorismate, produced by EntC, is a substrate for EntB isochorismatase. By using a competing isochorismate-consuming enzyme (the E. coli SEPHCHC synthase MenD), we found in a coupled assay that residual EntB isochorismatase activity decreased as a function of increasing MenD concentration. In the presence of excess MenD, EntB isochorismatase activity was observed to decrease by 84%, indicative of partial EntC-EntB channeling (16%) of isochorismate. Furthermore, addition of glycerol to the assay resulted in an increase of residual EntB isochorismatase activity to approximately 25% while in the presence of excess MenD. These experimental outcomes supported the existence of a substrate channeling surface identified in a previously reported protein-docking model of the EntC-EntB complex. Two positively charged EntB residues (K21 and R196) that were predicted to electrostatically guide negatively charged isochorismate between the EntC and EntB active sites were mutagenized to determine their effects on substrate channeling. The EntB variants K21D and R196D exhibited a near complete loss of isochorismatase activity, likely due to electrostatic repulsion of the negatively charged isochorismate substrate. Variants K21A, R196A, and K21A/R196A retained partial EntB isochorismatase activity in the absence of EntC; in the presence of EntC, isochorismatase activity in all variants increased to near wild-type levels. The MenD competition assay of the variants revealed that while K21A channeled isochorismate as efficiently as wild-type EntB (~ 15%), the variants K21A/R196A and R196A exhibited an approximately 5-fold loss in observed channeling efficiency (~3%). Taken together, these results demonstrate that partial substrate channeling occurs between EntC and EntB via a leaky electrostatic tunnel formed upon dynamic EntC-EntB complex formation and that EntB R196 plays an essential role in isochorismate channeling.</p>","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":"33 8","pages":"e5122"},"PeriodicalIF":4.5000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11258883/pdf/","citationCount":"0","resultStr":"{\"title\":\"Evidence of isochorismate channeling between the Escherichia coli enterobactin biosynthetic enzymes EntC and EntB.\",\"authors\":\"Xue Bin, Peter D Pawelek\",\"doi\":\"10.1002/pro.5122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Enterobactin is a high-affinity iron chelator produced and secreted by Escherichia coli and Salmonella typhimurium to scavenge scarce extracellular Fe<sup>3+</sup> as a micronutrient. EntC and EntB are the first two enzymes in the enterobactin biosynthetic pathway. Isochorismate, produced by EntC, is a substrate for EntB isochorismatase. By using a competing isochorismate-consuming enzyme (the E. coli SEPHCHC synthase MenD), we found in a coupled assay that residual EntB isochorismatase activity decreased as a function of increasing MenD concentration. In the presence of excess MenD, EntB isochorismatase activity was observed to decrease by 84%, indicative of partial EntC-EntB channeling (16%) of isochorismate. Furthermore, addition of glycerol to the assay resulted in an increase of residual EntB isochorismatase activity to approximately 25% while in the presence of excess MenD. These experimental outcomes supported the existence of a substrate channeling surface identified in a previously reported protein-docking model of the EntC-EntB complex. Two positively charged EntB residues (K21 and R196) that were predicted to electrostatically guide negatively charged isochorismate between the EntC and EntB active sites were mutagenized to determine their effects on substrate channeling. The EntB variants K21D and R196D exhibited a near complete loss of isochorismatase activity, likely due to electrostatic repulsion of the negatively charged isochorismate substrate. Variants K21A, R196A, and K21A/R196A retained partial EntB isochorismatase activity in the absence of EntC; in the presence of EntC, isochorismatase activity in all variants increased to near wild-type levels. The MenD competition assay of the variants revealed that while K21A channeled isochorismate as efficiently as wild-type EntB (~ 15%), the variants K21A/R196A and R196A exhibited an approximately 5-fold loss in observed channeling efficiency (~3%). Taken together, these results demonstrate that partial substrate channeling occurs between EntC and EntB via a leaky electrostatic tunnel formed upon dynamic EntC-EntB complex formation and that EntB R196 plays an essential role in isochorismate channeling.</p>\",\"PeriodicalId\":20761,\"journal\":{\"name\":\"Protein Science\",\"volume\":\"33 8\",\"pages\":\"e5122\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11258883/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Protein Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/pro.5122\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pro.5122","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Evidence of isochorismate channeling between the Escherichia coli enterobactin biosynthetic enzymes EntC and EntB.
Enterobactin is a high-affinity iron chelator produced and secreted by Escherichia coli and Salmonella typhimurium to scavenge scarce extracellular Fe3+ as a micronutrient. EntC and EntB are the first two enzymes in the enterobactin biosynthetic pathway. Isochorismate, produced by EntC, is a substrate for EntB isochorismatase. By using a competing isochorismate-consuming enzyme (the E. coli SEPHCHC synthase MenD), we found in a coupled assay that residual EntB isochorismatase activity decreased as a function of increasing MenD concentration. In the presence of excess MenD, EntB isochorismatase activity was observed to decrease by 84%, indicative of partial EntC-EntB channeling (16%) of isochorismate. Furthermore, addition of glycerol to the assay resulted in an increase of residual EntB isochorismatase activity to approximately 25% while in the presence of excess MenD. These experimental outcomes supported the existence of a substrate channeling surface identified in a previously reported protein-docking model of the EntC-EntB complex. Two positively charged EntB residues (K21 and R196) that were predicted to electrostatically guide negatively charged isochorismate between the EntC and EntB active sites were mutagenized to determine their effects on substrate channeling. The EntB variants K21D and R196D exhibited a near complete loss of isochorismatase activity, likely due to electrostatic repulsion of the negatively charged isochorismate substrate. Variants K21A, R196A, and K21A/R196A retained partial EntB isochorismatase activity in the absence of EntC; in the presence of EntC, isochorismatase activity in all variants increased to near wild-type levels. The MenD competition assay of the variants revealed that while K21A channeled isochorismate as efficiently as wild-type EntB (~ 15%), the variants K21A/R196A and R196A exhibited an approximately 5-fold loss in observed channeling efficiency (~3%). Taken together, these results demonstrate that partial substrate channeling occurs between EntC and EntB via a leaky electrostatic tunnel formed upon dynamic EntC-EntB complex formation and that EntB R196 plays an essential role in isochorismate channeling.
期刊介绍:
Protein Science, the flagship journal of The Protein Society, is a publication that focuses on advancing fundamental knowledge in the field of protein molecules. The journal welcomes original reports and review articles that contribute to our understanding of protein function, structure, folding, design, and evolution.
Additionally, Protein Science encourages papers that explore the applications of protein science in various areas such as therapeutics, protein-based biomaterials, bionanotechnology, synthetic biology, and bioelectronics.
The journal accepts manuscript submissions in any suitable format for review, with the requirement of converting the manuscript to journal-style format only upon acceptance for publication.
Protein Science is indexed and abstracted in numerous databases, including the Agricultural & Environmental Science Database (ProQuest), Biological Science Database (ProQuest), CAS: Chemical Abstracts Service (ACS), Embase (Elsevier), Health & Medical Collection (ProQuest), Health Research Premium Collection (ProQuest), Materials Science & Engineering Database (ProQuest), MEDLINE/PubMed (NLM), Natural Science Collection (ProQuest), and SciTech Premium Collection (ProQuest).