{"title":"使用硫酸软骨素水凝胶和间充质干细胞对兔子进行耳廓软骨再生。","authors":"Masoud Janipour, Amir Soltaniesmaeili, Seyed Hossein Owji, Zahra Shahhossein, Seyedeh-Sara Hashemi","doi":"10.1111/aor.14807","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>Cartilage is an avascular and alymphatic tissue that lacks the intrinsic ability to undergo spontaneous repair and regeneration in the event of significant injury. The efficacy of conventional therapies for invasive cartilage injuries is limited, thereby prompting the emergence of cartilage tissue engineering as a possible alternative. In this study, we fabricated three-dimensional hydrogel films utilizing sodium alginate (SA), gelatin (Gel), and chondroitin sulfate (CS). These films were included with Wharton's jelly mesenchymal stem cells (WJ-MSCs) and intended for cartilage tissue regeneration.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>The hydrogel film that were prepared underwent evaluation using various techniques including scanning electron microscope (SEM), Fourier transform infrared (FTIR) spectroscopy, assessment of the degree of swelling, degradation analysis, determination of water vapor transmission rate (WVTR), measurement of water contact angle (WCA), evaluation of mechanical strength, and assessment of biocompatibility. The rabbit ear cartilage regeneration by hydrogel films with and without of WJ-MSCs was studied by histopathological investigations during 15, 30, and 60 days.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>The hydrogel films containing CS exhibited superior metrics compared to other nanocomposites such as better mechanical strength (12.87 MPa in SA/Gel compared to 15.56 in SA/Gel/CS), stability, hydrophilicity, WVTR (3103.33 g/m<sup>2</sup>/day in SA/Gel compared to 2646.67 in nanocomposites containing CS), and swelling ratio (6.97 to 12.11% in SA/Gel composite compared to 5.03 to 10.90% in SA/Gel/CS). Histopathological studies showed the presence of chondrocyte cells in the lacunae on the 30th day and the complete restoration of the cartilage tissue on the 60th day following the injury in the group of SA/Gel/CS hydrogel containing WJ-MSCs.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>We successfully fabricated a scaffold composed of alginate, gelatin, and chondroitin sulfate. This scaffold was further enhanced by the incorporation of Wharton's jelly mesenchymal stem cells. Our findings demonstrate that this composite scaffold has remarkable biocompatibility and mechanical characteristics. The present study successfully demonstrated the therapeutic potential of the SA-Gel-CS hydrogel containing WJ-MSCs for cartilage regeneration in rabbits.</p>\n </section>\n </div>","PeriodicalId":8450,"journal":{"name":"Artificial organs","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Auricular cartilage regeneration using chondroitin sulfate-based hydrogel with mesenchymal stem cells in rabbits\",\"authors\":\"Masoud Janipour, Amir Soltaniesmaeili, Seyed Hossein Owji, Zahra Shahhossein, Seyedeh-Sara Hashemi\",\"doi\":\"10.1111/aor.14807\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Background</h3>\\n \\n <p>Cartilage is an avascular and alymphatic tissue that lacks the intrinsic ability to undergo spontaneous repair and regeneration in the event of significant injury. The efficacy of conventional therapies for invasive cartilage injuries is limited, thereby prompting the emergence of cartilage tissue engineering as a possible alternative. In this study, we fabricated three-dimensional hydrogel films utilizing sodium alginate (SA), gelatin (Gel), and chondroitin sulfate (CS). These films were included with Wharton's jelly mesenchymal stem cells (WJ-MSCs) and intended for cartilage tissue regeneration.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>The hydrogel film that were prepared underwent evaluation using various techniques including scanning electron microscope (SEM), Fourier transform infrared (FTIR) spectroscopy, assessment of the degree of swelling, degradation analysis, determination of water vapor transmission rate (WVTR), measurement of water contact angle (WCA), evaluation of mechanical strength, and assessment of biocompatibility. The rabbit ear cartilage regeneration by hydrogel films with and without of WJ-MSCs was studied by histopathological investigations during 15, 30, and 60 days.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>The hydrogel films containing CS exhibited superior metrics compared to other nanocomposites such as better mechanical strength (12.87 MPa in SA/Gel compared to 15.56 in SA/Gel/CS), stability, hydrophilicity, WVTR (3103.33 g/m<sup>2</sup>/day in SA/Gel compared to 2646.67 in nanocomposites containing CS), and swelling ratio (6.97 to 12.11% in SA/Gel composite compared to 5.03 to 10.90% in SA/Gel/CS). Histopathological studies showed the presence of chondrocyte cells in the lacunae on the 30th day and the complete restoration of the cartilage tissue on the 60th day following the injury in the group of SA/Gel/CS hydrogel containing WJ-MSCs.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusions</h3>\\n \\n <p>We successfully fabricated a scaffold composed of alginate, gelatin, and chondroitin sulfate. This scaffold was further enhanced by the incorporation of Wharton's jelly mesenchymal stem cells. Our findings demonstrate that this composite scaffold has remarkable biocompatibility and mechanical characteristics. The present study successfully demonstrated the therapeutic potential of the SA-Gel-CS hydrogel containing WJ-MSCs for cartilage regeneration in rabbits.</p>\\n </section>\\n </div>\",\"PeriodicalId\":8450,\"journal\":{\"name\":\"Artificial organs\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial organs\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/aor.14807\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial organs","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/aor.14807","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Auricular cartilage regeneration using chondroitin sulfate-based hydrogel with mesenchymal stem cells in rabbits
Background
Cartilage is an avascular and alymphatic tissue that lacks the intrinsic ability to undergo spontaneous repair and regeneration in the event of significant injury. The efficacy of conventional therapies for invasive cartilage injuries is limited, thereby prompting the emergence of cartilage tissue engineering as a possible alternative. In this study, we fabricated three-dimensional hydrogel films utilizing sodium alginate (SA), gelatin (Gel), and chondroitin sulfate (CS). These films were included with Wharton's jelly mesenchymal stem cells (WJ-MSCs) and intended for cartilage tissue regeneration.
Methods
The hydrogel film that were prepared underwent evaluation using various techniques including scanning electron microscope (SEM), Fourier transform infrared (FTIR) spectroscopy, assessment of the degree of swelling, degradation analysis, determination of water vapor transmission rate (WVTR), measurement of water contact angle (WCA), evaluation of mechanical strength, and assessment of biocompatibility. The rabbit ear cartilage regeneration by hydrogel films with and without of WJ-MSCs was studied by histopathological investigations during 15, 30, and 60 days.
Results
The hydrogel films containing CS exhibited superior metrics compared to other nanocomposites such as better mechanical strength (12.87 MPa in SA/Gel compared to 15.56 in SA/Gel/CS), stability, hydrophilicity, WVTR (3103.33 g/m2/day in SA/Gel compared to 2646.67 in nanocomposites containing CS), and swelling ratio (6.97 to 12.11% in SA/Gel composite compared to 5.03 to 10.90% in SA/Gel/CS). Histopathological studies showed the presence of chondrocyte cells in the lacunae on the 30th day and the complete restoration of the cartilage tissue on the 60th day following the injury in the group of SA/Gel/CS hydrogel containing WJ-MSCs.
Conclusions
We successfully fabricated a scaffold composed of alginate, gelatin, and chondroitin sulfate. This scaffold was further enhanced by the incorporation of Wharton's jelly mesenchymal stem cells. Our findings demonstrate that this composite scaffold has remarkable biocompatibility and mechanical characteristics. The present study successfully demonstrated the therapeutic potential of the SA-Gel-CS hydrogel containing WJ-MSCs for cartilage regeneration in rabbits.
期刊介绍:
Artificial Organs is the official peer reviewed journal of The International Federation for Artificial Organs (Members of the Federation are: The American Society for Artificial Internal Organs, The European Society for Artificial Organs, and The Japanese Society for Artificial Organs), The International Faculty for Artificial Organs, the International Society for Rotary Blood Pumps, The International Society for Pediatric Mechanical Cardiopulmonary Support, and the Vienna International Workshop on Functional Electrical Stimulation. Artificial Organs publishes original research articles dealing with developments in artificial organs applications and treatment modalities and their clinical applications worldwide. Membership in the Societies listed above is not a prerequisite for publication. Articles are published without charge to the author except for color figures and excess page charges as noted.