{"title":"大鼠肝细胞克隆 9 通过活性氧诱导溶酶体细胞死亡","authors":"Chien-Sheng Hsu, Shu-Hao Chang, Rei-Cheng Yang, Cheng-Han Lee, Ming-Sheng Lee, Jun-Kai Kao, Jeng-Jer Shieh","doi":"10.1002/tox.24377","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In sepsis, bacterial components, particularly lipopolysaccharide (LPS), trigger organ injuries such as liver dysfunction. Although sepsis induces hepatocyte damage, the mechanisms underlying sepsis-related hepatic failure remain unclear. In this study, we demonstrated that the LPS-treated rat hepatocyte cell line Clone 9 not only induced reactive oxygen species (ROS) generation and apoptosis but also increased the expression of the autophagy marker proteins LC3-II and p62, and decreased the expression of intact Lamp2A, a lysosomal membrane protein. Additionally, LPS increased lysosomal membrane permeability and galectin-3 puncta formation, and promoted lysosomal alkalization in Clone 9 cells. Pharmacological inhibition of caspase-8 and cathepsin D (CTSD) suppressed the activation of caspase-3 and rescued the viability of LPS-treated Clone 9 cells. Furthermore, LPS induced CTSD release associated with lysosomal leakage and contributed to caspase-8 activation. Pretreatment with the antioxidant <i>N</i>-acetylcysteine (NAC) not only diminished ROS generation and increased the cell survival rate, but also decreased the expression of activated caspase-8 and caspase-3 and increased the protein level of Lamp2A in LPS-treated Clone 9 cells. These results demonstrate that LPS-induced ROS causes lysosomal membrane permeabilization and lysosomal cell death, which may play a crucial role in hepatic failure in sepsis. Our results may facilitate the development of new strategies for sepsis management.</p>\n </div>","PeriodicalId":11756,"journal":{"name":"Environmental Toxicology","volume":"39 11","pages":"5008-5018"},"PeriodicalIF":4.4000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lipopolysaccharide-Induced Lysosomal Cell Death Through Reactive Oxygen Species in Rat Liver Cell Clone 9\",\"authors\":\"Chien-Sheng Hsu, Shu-Hao Chang, Rei-Cheng Yang, Cheng-Han Lee, Ming-Sheng Lee, Jun-Kai Kao, Jeng-Jer Shieh\",\"doi\":\"10.1002/tox.24377\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>In sepsis, bacterial components, particularly lipopolysaccharide (LPS), trigger organ injuries such as liver dysfunction. Although sepsis induces hepatocyte damage, the mechanisms underlying sepsis-related hepatic failure remain unclear. In this study, we demonstrated that the LPS-treated rat hepatocyte cell line Clone 9 not only induced reactive oxygen species (ROS) generation and apoptosis but also increased the expression of the autophagy marker proteins LC3-II and p62, and decreased the expression of intact Lamp2A, a lysosomal membrane protein. Additionally, LPS increased lysosomal membrane permeability and galectin-3 puncta formation, and promoted lysosomal alkalization in Clone 9 cells. Pharmacological inhibition of caspase-8 and cathepsin D (CTSD) suppressed the activation of caspase-3 and rescued the viability of LPS-treated Clone 9 cells. Furthermore, LPS induced CTSD release associated with lysosomal leakage and contributed to caspase-8 activation. Pretreatment with the antioxidant <i>N</i>-acetylcysteine (NAC) not only diminished ROS generation and increased the cell survival rate, but also decreased the expression of activated caspase-8 and caspase-3 and increased the protein level of Lamp2A in LPS-treated Clone 9 cells. These results demonstrate that LPS-induced ROS causes lysosomal membrane permeabilization and lysosomal cell death, which may play a crucial role in hepatic failure in sepsis. Our results may facilitate the development of new strategies for sepsis management.</p>\\n </div>\",\"PeriodicalId\":11756,\"journal\":{\"name\":\"Environmental Toxicology\",\"volume\":\"39 11\",\"pages\":\"5008-5018\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/tox.24377\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Toxicology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/tox.24377","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Lipopolysaccharide-Induced Lysosomal Cell Death Through Reactive Oxygen Species in Rat Liver Cell Clone 9
In sepsis, bacterial components, particularly lipopolysaccharide (LPS), trigger organ injuries such as liver dysfunction. Although sepsis induces hepatocyte damage, the mechanisms underlying sepsis-related hepatic failure remain unclear. In this study, we demonstrated that the LPS-treated rat hepatocyte cell line Clone 9 not only induced reactive oxygen species (ROS) generation and apoptosis but also increased the expression of the autophagy marker proteins LC3-II and p62, and decreased the expression of intact Lamp2A, a lysosomal membrane protein. Additionally, LPS increased lysosomal membrane permeability and galectin-3 puncta formation, and promoted lysosomal alkalization in Clone 9 cells. Pharmacological inhibition of caspase-8 and cathepsin D (CTSD) suppressed the activation of caspase-3 and rescued the viability of LPS-treated Clone 9 cells. Furthermore, LPS induced CTSD release associated with lysosomal leakage and contributed to caspase-8 activation. Pretreatment with the antioxidant N-acetylcysteine (NAC) not only diminished ROS generation and increased the cell survival rate, but also decreased the expression of activated caspase-8 and caspase-3 and increased the protein level of Lamp2A in LPS-treated Clone 9 cells. These results demonstrate that LPS-induced ROS causes lysosomal membrane permeabilization and lysosomal cell death, which may play a crucial role in hepatic failure in sepsis. Our results may facilitate the development of new strategies for sepsis management.
期刊介绍:
The journal publishes in the areas of toxicity and toxicology of environmental pollutants in air, dust, sediment, soil and water, and natural toxins in the environment.Of particular interest are:
Toxic or biologically disruptive impacts of anthropogenic chemicals such as pharmaceuticals, industrial organics, agricultural chemicals, and by-products such as chlorinated compounds from water disinfection and waste incineration;
Natural toxins and their impacts;
Biotransformation and metabolism of toxigenic compounds, food chains for toxin accumulation or biodegradation;
Assays of toxicity, endocrine disruption, mutagenicity, carcinogenicity, ecosystem impact and health hazard;
Environmental and public health risk assessment, environmental guidelines, environmental policy for toxicants.