{"title":"Nilaparvata lugens 中由胂虫和 Wolbachia 介导的杀虫剂保护作用","authors":"Huiming Liu, Dongxiao Zhao, Hongtao Niu, Zhichun Zhang, Na Wang, Xiangdong Liu, Huifang Guo","doi":"10.1007/s10340-024-01810-0","DOIUrl":null,"url":null,"abstract":"<p>While symbiont infections in invertebrates are widespread, their role in protecting hosts against natural enemies and chemical insecticides remains incompletely understood. Our study investigates the protective effects of <i>Arsenophonus</i> and <i>Wolbachia</i>, either individually or in co-infection, on <i>Nilaparvata lugens</i> against chemical insecticides. Our findings reveal that both <i>Arsenophonus</i> and <i>Wolbachia</i> confer protection against chemical insecticides, including triflumezopyrim, nitenpyram, and dinotefuran. However, these symbionts do not show protective effects against pymetrozine. <i>Wolbachia</i> infection leads to the up-regulation of the glutathione S-transferase (GST) gene <i>GSTm2</i> and the P450 gene <i>CYP6AY1</i>. Uniquely, co-infection results in the up-regulation of the P450 gene <i>CYP18A1</i>. Furthermore, the stability of the co-infection is not constant, with its frequency decreasing from 93.3 to 73.1% over a nine-generation passage, while single infections remain consistently high (> 95%). Our study suggests that <i>Wolbachia</i> and <i>Arsenophonus</i>, both individually and in co-infection, provide protection against two commonly used chemical insecticides in <i>N. lugens</i>.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":"6 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Arsenophonus and Wolbachia-mediated insecticide protection in Nilaparvata lugens\",\"authors\":\"Huiming Liu, Dongxiao Zhao, Hongtao Niu, Zhichun Zhang, Na Wang, Xiangdong Liu, Huifang Guo\",\"doi\":\"10.1007/s10340-024-01810-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>While symbiont infections in invertebrates are widespread, their role in protecting hosts against natural enemies and chemical insecticides remains incompletely understood. Our study investigates the protective effects of <i>Arsenophonus</i> and <i>Wolbachia</i>, either individually or in co-infection, on <i>Nilaparvata lugens</i> against chemical insecticides. Our findings reveal that both <i>Arsenophonus</i> and <i>Wolbachia</i> confer protection against chemical insecticides, including triflumezopyrim, nitenpyram, and dinotefuran. However, these symbionts do not show protective effects against pymetrozine. <i>Wolbachia</i> infection leads to the up-regulation of the glutathione S-transferase (GST) gene <i>GSTm2</i> and the P450 gene <i>CYP6AY1</i>. Uniquely, co-infection results in the up-regulation of the P450 gene <i>CYP18A1</i>. Furthermore, the stability of the co-infection is not constant, with its frequency decreasing from 93.3 to 73.1% over a nine-generation passage, while single infections remain consistently high (> 95%). Our study suggests that <i>Wolbachia</i> and <i>Arsenophonus</i>, both individually and in co-infection, provide protection against two commonly used chemical insecticides in <i>N. lugens</i>.</p>\",\"PeriodicalId\":16736,\"journal\":{\"name\":\"Journal of Pest Science\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pest Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s10340-024-01810-0\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pest Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10340-024-01810-0","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
Arsenophonus and Wolbachia-mediated insecticide protection in Nilaparvata lugens
While symbiont infections in invertebrates are widespread, their role in protecting hosts against natural enemies and chemical insecticides remains incompletely understood. Our study investigates the protective effects of Arsenophonus and Wolbachia, either individually or in co-infection, on Nilaparvata lugens against chemical insecticides. Our findings reveal that both Arsenophonus and Wolbachia confer protection against chemical insecticides, including triflumezopyrim, nitenpyram, and dinotefuran. However, these symbionts do not show protective effects against pymetrozine. Wolbachia infection leads to the up-regulation of the glutathione S-transferase (GST) gene GSTm2 and the P450 gene CYP6AY1. Uniquely, co-infection results in the up-regulation of the P450 gene CYP18A1. Furthermore, the stability of the co-infection is not constant, with its frequency decreasing from 93.3 to 73.1% over a nine-generation passage, while single infections remain consistently high (> 95%). Our study suggests that Wolbachia and Arsenophonus, both individually and in co-infection, provide protection against two commonly used chemical insecticides in N. lugens.
期刊介绍:
Journal of Pest Science publishes high-quality papers on all aspects of pest science in agriculture, horticulture (including viticulture), forestry, urban pests, and stored products research, including health and safety issues.
Journal of Pest Science reports on advances in control of pests and animal vectors of diseases, the biology, ethology and ecology of pests and their antagonists, and the use of other beneficial organisms in pest control. The journal covers all noxious or damaging groups of animals, including arthropods, nematodes, molluscs, and vertebrates.
Journal of Pest Science devotes special attention to emerging and innovative pest control strategies, including the side effects of such approaches on non-target organisms, for example natural enemies and pollinators, and the implementation of these strategies in integrated pest management.
Journal of Pest Science also publishes papers on the management of agro- and forest ecosystems where this is relevant to pest control. Papers on important methodological developments relevant for pest control will be considered as well.