利用土壤和脂质提取物对支链 GDGT 温度和 pH 值代用指标进行实验室间比较

IF 2.9 2区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS
Cindy De Jonge, Francien Peterse, Klaas G. J. Nierop, Thomas M. Blattmann, Marcelo Alexandre, Salome Ansanay-Alex, Thomas Austin, Mathieu Babin, Edouard Bard, Thorsten Bauersachs, Jerome Blewett, Brenna Boehman, Isla S. Castañeda, Junhui Chen, Martina L. G. Conti, Sergio Contreras, Julia Cordes, Nina Davtian, Bart van Dongen, Bella Duncan, Felix J. Elling, Valier Galy, Shaopeng Gao, Jens Hefter, Kai-Uwe Hinrichs, Mitchell R. Helling, Mariska Hoorweg, Ellen Hopmans, Juzhi Hou, Yongsong Huang, Arnaud Huguet, Guodong Jia, Cornelia Karger, Brendan J. Keely, Stephanie Kusch, Hui Li, Jie Liang, Julius S. Lipp, Weiguo Liu, Hongxuan Lu, Kai Mangelsdorf, Hayley Manners, Alfredo Martinez Garcia, Guillemette Menot, Gesine Mollenhauer, B. David A. Naafs, Sebastian Naeher, Lauren K. O'Connor, Ethan M. Pearce, Ann Pearson, Zhiguo Rao, Marta Rodrigo-Gámiz, Chris Rosendahl, Frauke Rostek, Rui Bao, Prasanta Sanyal, Florence Schubotz, Wesley Scott, Rahul Sen, Appy Sluijs, Rienk Smittenberg, Ioana Stefanescu, Jia Sun, Paul Sutton, Jess Tierney, Eduardo Tejos, Joan Villanueva, Huanye Wang, Josef Werne, Masanobu Yamamoto, Huan Yang, Aifeng Zhou
{"title":"利用土壤和脂质提取物对支链 GDGT 温度和 pH 值代用指标进行实验室间比较","authors":"Cindy De Jonge,&nbsp;Francien Peterse,&nbsp;Klaas G. J. Nierop,&nbsp;Thomas M. Blattmann,&nbsp;Marcelo Alexandre,&nbsp;Salome Ansanay-Alex,&nbsp;Thomas Austin,&nbsp;Mathieu Babin,&nbsp;Edouard Bard,&nbsp;Thorsten Bauersachs,&nbsp;Jerome Blewett,&nbsp;Brenna Boehman,&nbsp;Isla S. Castañeda,&nbsp;Junhui Chen,&nbsp;Martina L. G. Conti,&nbsp;Sergio Contreras,&nbsp;Julia Cordes,&nbsp;Nina Davtian,&nbsp;Bart van Dongen,&nbsp;Bella Duncan,&nbsp;Felix J. Elling,&nbsp;Valier Galy,&nbsp;Shaopeng Gao,&nbsp;Jens Hefter,&nbsp;Kai-Uwe Hinrichs,&nbsp;Mitchell R. Helling,&nbsp;Mariska Hoorweg,&nbsp;Ellen Hopmans,&nbsp;Juzhi Hou,&nbsp;Yongsong Huang,&nbsp;Arnaud Huguet,&nbsp;Guodong Jia,&nbsp;Cornelia Karger,&nbsp;Brendan J. Keely,&nbsp;Stephanie Kusch,&nbsp;Hui Li,&nbsp;Jie Liang,&nbsp;Julius S. Lipp,&nbsp;Weiguo Liu,&nbsp;Hongxuan Lu,&nbsp;Kai Mangelsdorf,&nbsp;Hayley Manners,&nbsp;Alfredo Martinez Garcia,&nbsp;Guillemette Menot,&nbsp;Gesine Mollenhauer,&nbsp;B. David A. Naafs,&nbsp;Sebastian Naeher,&nbsp;Lauren K. O'Connor,&nbsp;Ethan M. Pearce,&nbsp;Ann Pearson,&nbsp;Zhiguo Rao,&nbsp;Marta Rodrigo-Gámiz,&nbsp;Chris Rosendahl,&nbsp;Frauke Rostek,&nbsp;Rui Bao,&nbsp;Prasanta Sanyal,&nbsp;Florence Schubotz,&nbsp;Wesley Scott,&nbsp;Rahul Sen,&nbsp;Appy Sluijs,&nbsp;Rienk Smittenberg,&nbsp;Ioana Stefanescu,&nbsp;Jia Sun,&nbsp;Paul Sutton,&nbsp;Jess Tierney,&nbsp;Eduardo Tejos,&nbsp;Joan Villanueva,&nbsp;Huanye Wang,&nbsp;Josef Werne,&nbsp;Masanobu Yamamoto,&nbsp;Huan Yang,&nbsp;Aifeng Zhou","doi":"10.1029/2024GC011583","DOIUrl":null,"url":null,"abstract":"<p>Ratios of glycerol dialkyl glycerol tetraethers (GDGT), which are membrane lipids of bacteria and archaea, are at the base of several paleoenvironmental proxies. They are frequently applied to soils as well as lake- and marine sediments to generate records of past temperature and soil pH. To derive meaningful environmental information from these reconstructions, high analytical reproducibility is required. Based on submitted results by 39 laboratories from across the world, which employ a diverse range of analytical and quantification methods, we explored the reproducibility of brGDGT-based proxies (MBT′<sub>5ME</sub>, IR, and #rings<sub>tetra</sub>) measured on four soil samples and four soil lipid extracts. Correct identification and integration of 5- and 6-methyl brGDGTs is a prerequisite for the robust calculation of proxy values, but this can be challenging as indicated by the large inter-interlaboratory variation. The exclusion of statistical outliers improves the reproducibility, where the remaining uncertainty translates into a temperature offset from median proxy values of 0.3–0.9°C and a pH offset of 0.05–0.3. There is no apparent systematic impact of the extraction method and sample preparation steps on the brGDGT ratios. Although reported GDGT concentrations are generally consistent within laboratories, they vary greatly between laboratories. This large variability in brGDGT quantification may relate to variations in ionization efficiency or specific mass spectrometer settings possibly impacting the response of brGDGTs masses relative to that of the internal standard used. While ratio values of GDGT are generally comparable, quantities can currently not be compared between laboratories.</p>","PeriodicalId":50422,"journal":{"name":"Geochemistry Geophysics Geosystems","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GC011583","citationCount":"0","resultStr":"{\"title\":\"Interlaboratory Comparison of Branched GDGT Temperature and pH Proxies Using Soils and Lipid Extracts\",\"authors\":\"Cindy De Jonge,&nbsp;Francien Peterse,&nbsp;Klaas G. J. Nierop,&nbsp;Thomas M. Blattmann,&nbsp;Marcelo Alexandre,&nbsp;Salome Ansanay-Alex,&nbsp;Thomas Austin,&nbsp;Mathieu Babin,&nbsp;Edouard Bard,&nbsp;Thorsten Bauersachs,&nbsp;Jerome Blewett,&nbsp;Brenna Boehman,&nbsp;Isla S. Castañeda,&nbsp;Junhui Chen,&nbsp;Martina L. G. Conti,&nbsp;Sergio Contreras,&nbsp;Julia Cordes,&nbsp;Nina Davtian,&nbsp;Bart van Dongen,&nbsp;Bella Duncan,&nbsp;Felix J. Elling,&nbsp;Valier Galy,&nbsp;Shaopeng Gao,&nbsp;Jens Hefter,&nbsp;Kai-Uwe Hinrichs,&nbsp;Mitchell R. Helling,&nbsp;Mariska Hoorweg,&nbsp;Ellen Hopmans,&nbsp;Juzhi Hou,&nbsp;Yongsong Huang,&nbsp;Arnaud Huguet,&nbsp;Guodong Jia,&nbsp;Cornelia Karger,&nbsp;Brendan J. Keely,&nbsp;Stephanie Kusch,&nbsp;Hui Li,&nbsp;Jie Liang,&nbsp;Julius S. Lipp,&nbsp;Weiguo Liu,&nbsp;Hongxuan Lu,&nbsp;Kai Mangelsdorf,&nbsp;Hayley Manners,&nbsp;Alfredo Martinez Garcia,&nbsp;Guillemette Menot,&nbsp;Gesine Mollenhauer,&nbsp;B. David A. Naafs,&nbsp;Sebastian Naeher,&nbsp;Lauren K. O'Connor,&nbsp;Ethan M. Pearce,&nbsp;Ann Pearson,&nbsp;Zhiguo Rao,&nbsp;Marta Rodrigo-Gámiz,&nbsp;Chris Rosendahl,&nbsp;Frauke Rostek,&nbsp;Rui Bao,&nbsp;Prasanta Sanyal,&nbsp;Florence Schubotz,&nbsp;Wesley Scott,&nbsp;Rahul Sen,&nbsp;Appy Sluijs,&nbsp;Rienk Smittenberg,&nbsp;Ioana Stefanescu,&nbsp;Jia Sun,&nbsp;Paul Sutton,&nbsp;Jess Tierney,&nbsp;Eduardo Tejos,&nbsp;Joan Villanueva,&nbsp;Huanye Wang,&nbsp;Josef Werne,&nbsp;Masanobu Yamamoto,&nbsp;Huan Yang,&nbsp;Aifeng Zhou\",\"doi\":\"10.1029/2024GC011583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Ratios of glycerol dialkyl glycerol tetraethers (GDGT), which are membrane lipids of bacteria and archaea, are at the base of several paleoenvironmental proxies. They are frequently applied to soils as well as lake- and marine sediments to generate records of past temperature and soil pH. To derive meaningful environmental information from these reconstructions, high analytical reproducibility is required. Based on submitted results by 39 laboratories from across the world, which employ a diverse range of analytical and quantification methods, we explored the reproducibility of brGDGT-based proxies (MBT′<sub>5ME</sub>, IR, and #rings<sub>tetra</sub>) measured on four soil samples and four soil lipid extracts. Correct identification and integration of 5- and 6-methyl brGDGTs is a prerequisite for the robust calculation of proxy values, but this can be challenging as indicated by the large inter-interlaboratory variation. The exclusion of statistical outliers improves the reproducibility, where the remaining uncertainty translates into a temperature offset from median proxy values of 0.3–0.9°C and a pH offset of 0.05–0.3. There is no apparent systematic impact of the extraction method and sample preparation steps on the brGDGT ratios. Although reported GDGT concentrations are generally consistent within laboratories, they vary greatly between laboratories. This large variability in brGDGT quantification may relate to variations in ionization efficiency or specific mass spectrometer settings possibly impacting the response of brGDGTs masses relative to that of the internal standard used. While ratio values of GDGT are generally comparable, quantities can currently not be compared between laboratories.</p>\",\"PeriodicalId\":50422,\"journal\":{\"name\":\"Geochemistry Geophysics Geosystems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GC011583\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geochemistry Geophysics Geosystems\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024GC011583\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemistry Geophysics Geosystems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GC011583","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

甘油二烷基甘油四醚(GDGT)是细菌和古细菌的膜脂,其比率是多种古环境代用指标的基础。它们经常被应用于土壤以及湖泊和海洋沉积物,以生成过去温度和土壤 pH 值的记录。要想从这些重建中获得有意义的环境信息,就必须具备较高的分析重现性。根据全球 39 个实验室提交的结果(这些实验室采用了多种分析和定量方法),我们探讨了基于 brGDGT 的代用指标(MBT′5ME、IR 和 #ringstetra)在四种土壤样本和四种土壤脂质提取物上测量的重现性。正确识别和整合 5-甲基和 6-甲基 brGDGTs 是可靠计算代用值的先决条件,但实验室间的巨大差异表明这很有难度。排除统计异常值提高了可重复性,剩余的不确定性转化为与中位替代值 0.3-0.9°C 的温度偏移和 0.05-0.3 的 pH 偏移。提取方法和样品制备步骤对 brGDGT 比率没有明显的系统性影响。虽然实验室内部报告的 GDGT 浓度基本一致,但实验室之间的差异却很大。brGDGT 定量的巨大差异可能与电离效率或特定质谱仪设置的差异有关,这可能会影响 brGDGT 质量相对于所用内标质量的响应。虽然 GDGT 的比值通常具有可比性,但目前实验室之间还无法比较其数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Interlaboratory Comparison of Branched GDGT Temperature and pH Proxies Using Soils and Lipid Extracts

Interlaboratory Comparison of Branched GDGT Temperature and pH Proxies Using Soils and Lipid Extracts

Ratios of glycerol dialkyl glycerol tetraethers (GDGT), which are membrane lipids of bacteria and archaea, are at the base of several paleoenvironmental proxies. They are frequently applied to soils as well as lake- and marine sediments to generate records of past temperature and soil pH. To derive meaningful environmental information from these reconstructions, high analytical reproducibility is required. Based on submitted results by 39 laboratories from across the world, which employ a diverse range of analytical and quantification methods, we explored the reproducibility of brGDGT-based proxies (MBT′5ME, IR, and #ringstetra) measured on four soil samples and four soil lipid extracts. Correct identification and integration of 5- and 6-methyl brGDGTs is a prerequisite for the robust calculation of proxy values, but this can be challenging as indicated by the large inter-interlaboratory variation. The exclusion of statistical outliers improves the reproducibility, where the remaining uncertainty translates into a temperature offset from median proxy values of 0.3–0.9°C and a pH offset of 0.05–0.3. There is no apparent systematic impact of the extraction method and sample preparation steps on the brGDGT ratios. Although reported GDGT concentrations are generally consistent within laboratories, they vary greatly between laboratories. This large variability in brGDGT quantification may relate to variations in ionization efficiency or specific mass spectrometer settings possibly impacting the response of brGDGTs masses relative to that of the internal standard used. While ratio values of GDGT are generally comparable, quantities can currently not be compared between laboratories.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geochemistry Geophysics Geosystems
Geochemistry Geophysics Geosystems 地学-地球化学与地球物理
CiteScore
5.90
自引率
11.40%
发文量
252
审稿时长
1 months
期刊介绍: Geochemistry, Geophysics, Geosystems (G3) publishes research papers on Earth and planetary processes with a focus on understanding the Earth as a system. Observational, experimental, and theoretical investigations of the solid Earth, hydrosphere, atmosphere, biosphere, and solar system at all spatial and temporal scales are welcome. Articles should be of broad interest, and interdisciplinary approaches are encouraged. Areas of interest for this peer-reviewed journal include, but are not limited to: The physics and chemistry of the Earth, including its structure, composition, physical properties, dynamics, and evolution Principles and applications of geochemical proxies to studies of Earth history The physical properties, composition, and temporal evolution of the Earth''s major reservoirs and the coupling between them The dynamics of geochemical and biogeochemical cycles at all spatial and temporal scales Physical and cosmochemical constraints on the composition, origin, and evolution of the Earth and other terrestrial planets The chemistry and physics of solar system materials that are relevant to the formation, evolution, and current state of the Earth and the planets Advances in modeling, observation, and experimentation that are of widespread interest in the geosciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信