{"title":"根据表型性状和对胁迫的产量反应鉴定高产耐旱小麦品种","authors":"Yibo Li, Fulu Tao, Yuanfeng Hao, Yonggui Xiao, Zhonghu He, Matthew Reynolds","doi":"10.1111/jac.12738","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Drought is one of the most adverse factors affecting plant growth and productivity. Identifying elite genotypes and their ideotypic traits conferring high yield potential and drought tolerance is critical in selecting and breeding drought-tolerant wheat cultivars. In this study, we conducted field experiments at the Xinxiang Agricultural Comprehensive Experimental station in the North China Plain from 2018 to 2020 and assessed 209 wheat cultivars released since the 1940s under irrigated and nonirrigated conditions. Then, we selected drought-tolerant cultivars by classifying them into four groups based on yield response to drought stress and several drought indices. Finally, the key ideotypic traits associated with high yield potential and drought tolerance were identified. Results indicated that the grain yield of the 209 cultivars decreased on average by 10.4% and 9.4% under nonirrigated treatment in 2018–2019 and 2019–2020, respectively, relative to full irrigation. The high-yielding cultivars under both irrigation treatments are characterised by a compact plant type, larger thousand-grain weight, larger chlorophyll content, higher leaf photosynthesis, shorter plant height and stay-green traits. The stomatal and nonstomatal limitations are strongly associated with genotype yield performance, elucidating a potential mechanism underlying drought tolerance. Drought tolerance and yield stability of wheat cultivars have been improved through breeding over the past 70 years. Our findings enhance understanding of drought tolerance and identify genotypes and traits beneficial for breeding high-yielding and drought-tolerant cultivars.</p>\n </div>","PeriodicalId":14864,"journal":{"name":"Journal of Agronomy and Crop Science","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identifying High-Yielding and Drought-Tolerant Wheat Cultivars Based on Ideotypic Traits and Yield Responses to Stress\",\"authors\":\"Yibo Li, Fulu Tao, Yuanfeng Hao, Yonggui Xiao, Zhonghu He, Matthew Reynolds\",\"doi\":\"10.1111/jac.12738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Drought is one of the most adverse factors affecting plant growth and productivity. Identifying elite genotypes and their ideotypic traits conferring high yield potential and drought tolerance is critical in selecting and breeding drought-tolerant wheat cultivars. In this study, we conducted field experiments at the Xinxiang Agricultural Comprehensive Experimental station in the North China Plain from 2018 to 2020 and assessed 209 wheat cultivars released since the 1940s under irrigated and nonirrigated conditions. Then, we selected drought-tolerant cultivars by classifying them into four groups based on yield response to drought stress and several drought indices. Finally, the key ideotypic traits associated with high yield potential and drought tolerance were identified. Results indicated that the grain yield of the 209 cultivars decreased on average by 10.4% and 9.4% under nonirrigated treatment in 2018–2019 and 2019–2020, respectively, relative to full irrigation. The high-yielding cultivars under both irrigation treatments are characterised by a compact plant type, larger thousand-grain weight, larger chlorophyll content, higher leaf photosynthesis, shorter plant height and stay-green traits. The stomatal and nonstomatal limitations are strongly associated with genotype yield performance, elucidating a potential mechanism underlying drought tolerance. Drought tolerance and yield stability of wheat cultivars have been improved through breeding over the past 70 years. Our findings enhance understanding of drought tolerance and identify genotypes and traits beneficial for breeding high-yielding and drought-tolerant cultivars.</p>\\n </div>\",\"PeriodicalId\":14864,\"journal\":{\"name\":\"Journal of Agronomy and Crop Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Agronomy and Crop Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jac.12738\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agronomy and Crop Science","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jac.12738","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Identifying High-Yielding and Drought-Tolerant Wheat Cultivars Based on Ideotypic Traits and Yield Responses to Stress
Drought is one of the most adverse factors affecting plant growth and productivity. Identifying elite genotypes and their ideotypic traits conferring high yield potential and drought tolerance is critical in selecting and breeding drought-tolerant wheat cultivars. In this study, we conducted field experiments at the Xinxiang Agricultural Comprehensive Experimental station in the North China Plain from 2018 to 2020 and assessed 209 wheat cultivars released since the 1940s under irrigated and nonirrigated conditions. Then, we selected drought-tolerant cultivars by classifying them into four groups based on yield response to drought stress and several drought indices. Finally, the key ideotypic traits associated with high yield potential and drought tolerance were identified. Results indicated that the grain yield of the 209 cultivars decreased on average by 10.4% and 9.4% under nonirrigated treatment in 2018–2019 and 2019–2020, respectively, relative to full irrigation. The high-yielding cultivars under both irrigation treatments are characterised by a compact plant type, larger thousand-grain weight, larger chlorophyll content, higher leaf photosynthesis, shorter plant height and stay-green traits. The stomatal and nonstomatal limitations are strongly associated with genotype yield performance, elucidating a potential mechanism underlying drought tolerance. Drought tolerance and yield stability of wheat cultivars have been improved through breeding over the past 70 years. Our findings enhance understanding of drought tolerance and identify genotypes and traits beneficial for breeding high-yielding and drought-tolerant cultivars.
期刊介绍:
The effects of stress on crop production of agricultural cultivated plants will grow to paramount importance in the 21st century, and the Journal of Agronomy and Crop Science aims to assist in understanding these challenges. In this context, stress refers to extreme conditions under which crops and forages grow. The journal publishes original papers and reviews on the general and special science of abiotic plant stress. Specific topics include: drought, including water-use efficiency, such as salinity, alkaline and acidic stress, extreme temperatures since heat, cold and chilling stress limit the cultivation of crops, flooding and oxidative stress, and means of restricting them. Special attention is on research which have the topic of narrowing the yield gap. The Journal will give preference to field research and studies on plant stress highlighting these subsections. Particular regard is given to application-oriented basic research and applied research. The application of the scientific principles of agricultural crop experimentation is an essential prerequisite for the publication. Studies based on field experiments must show that they have been repeated (at least three times) on the same organism or have been conducted on several different varieties.