{"title":"通过智能卡数据对地铁网络内的乘客负荷进行精细预测","authors":"Xiancai Tian, Chen Zhang, Baihua Zheng","doi":"10.1155/2024/6643018","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Metro system serves as the backbone for urban public transportation. Accurate passenger load prediction for the metro system plays a crucial role in metro service quality improvement, such as helping operators schedule train timetables and passengers plan their trips. However, existing works can only predict low-grained passenger flows of origin-destination (O-D) paths or inflows/outflows of each station but cannot predict passenger load distribution over the whole metro network. To this end, this paper proposes an end-to-end inference framework, PIPE, for passenger load prediction of every metro segment between two adjacent stations, by only utilizing smart card data. In particular, PIPE includes two modules. The first is the core. It formulates the travel time distribution of each metro segment as a truncated Gaussian distribution. Since there might be several possible routes for certain O-D paths, the population-level travel time distribution of these O-D paths would be a mixture of travel times of different routes. Considering the route preference may change over time, a dynamic truncated Gaussian mixture model is proposed for parameter inference of each truncated Gaussian distribution of each metro segment. The second module serves as the supplement, which compiles a bunch of methods for predicting passenger flows of O-D paths. Built upon them, PIPE is able to predict the travel time that future passengers of each O-D path will take for passing each metro segment and consequently can predict the passenger load of each metro segment in the short future. Numerical studies from Singapore’s metro system demonstrate the efficacy of our method.</p>\n </div>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":"2024 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/6643018","citationCount":"0","resultStr":"{\"title\":\"Fine-Grained Passenger Load Prediction inside Metro Network via Smart Card Data\",\"authors\":\"Xiancai Tian, Chen Zhang, Baihua Zheng\",\"doi\":\"10.1155/2024/6643018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Metro system serves as the backbone for urban public transportation. Accurate passenger load prediction for the metro system plays a crucial role in metro service quality improvement, such as helping operators schedule train timetables and passengers plan their trips. However, existing works can only predict low-grained passenger flows of origin-destination (O-D) paths or inflows/outflows of each station but cannot predict passenger load distribution over the whole metro network. To this end, this paper proposes an end-to-end inference framework, PIPE, for passenger load prediction of every metro segment between two adjacent stations, by only utilizing smart card data. In particular, PIPE includes two modules. The first is the core. It formulates the travel time distribution of each metro segment as a truncated Gaussian distribution. Since there might be several possible routes for certain O-D paths, the population-level travel time distribution of these O-D paths would be a mixture of travel times of different routes. Considering the route preference may change over time, a dynamic truncated Gaussian mixture model is proposed for parameter inference of each truncated Gaussian distribution of each metro segment. The second module serves as the supplement, which compiles a bunch of methods for predicting passenger flows of O-D paths. Built upon them, PIPE is able to predict the travel time that future passengers of each O-D path will take for passing each metro segment and consequently can predict the passenger load of each metro segment in the short future. Numerical studies from Singapore’s metro system demonstrate the efficacy of our method.</p>\\n </div>\",\"PeriodicalId\":14089,\"journal\":{\"name\":\"International Journal of Intelligent Systems\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/6643018\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Intelligent Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/6643018\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/6643018","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Fine-Grained Passenger Load Prediction inside Metro Network via Smart Card Data
Metro system serves as the backbone for urban public transportation. Accurate passenger load prediction for the metro system plays a crucial role in metro service quality improvement, such as helping operators schedule train timetables and passengers plan their trips. However, existing works can only predict low-grained passenger flows of origin-destination (O-D) paths or inflows/outflows of each station but cannot predict passenger load distribution over the whole metro network. To this end, this paper proposes an end-to-end inference framework, PIPE, for passenger load prediction of every metro segment between two adjacent stations, by only utilizing smart card data. In particular, PIPE includes two modules. The first is the core. It formulates the travel time distribution of each metro segment as a truncated Gaussian distribution. Since there might be several possible routes for certain O-D paths, the population-level travel time distribution of these O-D paths would be a mixture of travel times of different routes. Considering the route preference may change over time, a dynamic truncated Gaussian mixture model is proposed for parameter inference of each truncated Gaussian distribution of each metro segment. The second module serves as the supplement, which compiles a bunch of methods for predicting passenger flows of O-D paths. Built upon them, PIPE is able to predict the travel time that future passengers of each O-D path will take for passing each metro segment and consequently can predict the passenger load of each metro segment in the short future. Numerical studies from Singapore’s metro system demonstrate the efficacy of our method.
期刊介绍:
The International Journal of Intelligent Systems serves as a forum for individuals interested in tapping into the vast theories based on intelligent systems construction. With its peer-reviewed format, the journal explores several fascinating editorials written by today''s experts in the field. Because new developments are being introduced each day, there''s much to be learned — examination, analysis creation, information retrieval, man–computer interactions, and more. The International Journal of Intelligent Systems uses charts and illustrations to demonstrate these ground-breaking issues, and encourages readers to share their thoughts and experiences.