Zhenlin Chen , Jing Xue , Lei Wu , Kun Dang , Hongwei Ji , Chuncheng Chen , Yuchao Zhang , Jincai Zhao
{"title":"等离子铜光电阴极上高效硝酸盐还原的光电和热协同效应","authors":"Zhenlin Chen , Jing Xue , Lei Wu , Kun Dang , Hongwei Ji , Chuncheng Chen , Yuchao Zhang , Jincai Zhao","doi":"10.1016/S1872-2067(24)60060-4","DOIUrl":null,"url":null,"abstract":"<div><p>Recently, electrochemical nitrate reduction reaction (NO<sub>3</sub>RR) has been intensively explored for the synthesis of ammonia, and copper (Cu) has become one of the most promising materials for NO<sub>3</sub>RR. Notably, Cu is an important plasmonic metal that absorbs visible light. The plasmonic effect might have a significant influence on the performance of Cu-catalyzed NO<sub>3</sub>RR but has been seldom reported. Herein, we report the synergistic photoelectric and thermal effect for efficient and stable NO<sub>3</sub>RR on plasmonic Cu nanowire photocathodes, which is exclusively effective for NO<sub>3</sub>RR but has no effect on the competing hydrogen evolution reaction. The faradaic efficiency for ammonia production is nearly 100% within a potential range from –0.2 V to –0.4 V <em>vs</em>. RHE, and a high ammonia yield rate of 1.37 mmol h<sup>–1</sup> cm<sup>–2</sup> is achieved at –0.2 V <em>vs</em>. RHE. Further operando photoelectrochemical studies and theoretical simulations confirm that the plasmonic excitation efficiently accelerates the rate-limiting desorption of NH<sub>3</sub> on Cu surfaces. We further demonstrate the versatility of this strategy to other Cu-based nanostructures.</p></div>","PeriodicalId":9832,"journal":{"name":"Chinese Journal of Catalysis","volume":"62 ","pages":"Pages 219-230"},"PeriodicalIF":15.7000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic photoelectric and thermal effect for efficient nitrate reduction on plasmonic Cu photocathodes\",\"authors\":\"Zhenlin Chen , Jing Xue , Lei Wu , Kun Dang , Hongwei Ji , Chuncheng Chen , Yuchao Zhang , Jincai Zhao\",\"doi\":\"10.1016/S1872-2067(24)60060-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Recently, electrochemical nitrate reduction reaction (NO<sub>3</sub>RR) has been intensively explored for the synthesis of ammonia, and copper (Cu) has become one of the most promising materials for NO<sub>3</sub>RR. Notably, Cu is an important plasmonic metal that absorbs visible light. The plasmonic effect might have a significant influence on the performance of Cu-catalyzed NO<sub>3</sub>RR but has been seldom reported. Herein, we report the synergistic photoelectric and thermal effect for efficient and stable NO<sub>3</sub>RR on plasmonic Cu nanowire photocathodes, which is exclusively effective for NO<sub>3</sub>RR but has no effect on the competing hydrogen evolution reaction. The faradaic efficiency for ammonia production is nearly 100% within a potential range from –0.2 V to –0.4 V <em>vs</em>. RHE, and a high ammonia yield rate of 1.37 mmol h<sup>–1</sup> cm<sup>–2</sup> is achieved at –0.2 V <em>vs</em>. RHE. Further operando photoelectrochemical studies and theoretical simulations confirm that the plasmonic excitation efficiently accelerates the rate-limiting desorption of NH<sub>3</sub> on Cu surfaces. We further demonstrate the versatility of this strategy to other Cu-based nanostructures.</p></div>\",\"PeriodicalId\":9832,\"journal\":{\"name\":\"Chinese Journal of Catalysis\",\"volume\":\"62 \",\"pages\":\"Pages 219-230\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1872206724600604\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872206724600604","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
最近,人们对电化学硝酸盐还原反应(NO3RR)合成氨进行了深入探讨,而铜(Cu)已成为最有前途的 NO3RR 材料之一。值得注意的是,铜是一种能吸收可见光的重要等离子金属。质子效应可能会对铜催化 NO3RR 的性能产生重大影响,但却鲜有报道。在此,我们报告了在等离子体铜纳米线光电阴极上高效稳定的 NO3RR 的光电和热协同效应,该效应只对 NO3RR 有效,但对竞争性的氢进化反应没有影响。在 -0.2 V 至 -0.4 V 的电位范围内,氨生产的法拉第效率接近 100%,而在 -0.2 V 的电位范围内,氨的产率高达 1.37 mmol h-1 cm-2。进一步的操作性光电化学研究和理论模拟证实,质子激发有效地加速了 NH3 在铜表面的限速解吸。我们进一步证明了这一策略在其他铜基纳米结构上的通用性。
Synergistic photoelectric and thermal effect for efficient nitrate reduction on plasmonic Cu photocathodes
Recently, electrochemical nitrate reduction reaction (NO3RR) has been intensively explored for the synthesis of ammonia, and copper (Cu) has become one of the most promising materials for NO3RR. Notably, Cu is an important plasmonic metal that absorbs visible light. The plasmonic effect might have a significant influence on the performance of Cu-catalyzed NO3RR but has been seldom reported. Herein, we report the synergistic photoelectric and thermal effect for efficient and stable NO3RR on plasmonic Cu nanowire photocathodes, which is exclusively effective for NO3RR but has no effect on the competing hydrogen evolution reaction. The faradaic efficiency for ammonia production is nearly 100% within a potential range from –0.2 V to –0.4 V vs. RHE, and a high ammonia yield rate of 1.37 mmol h–1 cm–2 is achieved at –0.2 V vs. RHE. Further operando photoelectrochemical studies and theoretical simulations confirm that the plasmonic excitation efficiently accelerates the rate-limiting desorption of NH3 on Cu surfaces. We further demonstrate the versatility of this strategy to other Cu-based nanostructures.
期刊介绍:
The journal covers a broad scope, encompassing new trends in catalysis for applications in energy production, environmental protection, and the preparation of materials, petroleum chemicals, and fine chemicals. It explores the scientific foundation for preparing and activating catalysts of commercial interest, emphasizing representative models.The focus includes spectroscopic methods for structural characterization, especially in situ techniques, as well as new theoretical methods with practical impact in catalysis and catalytic reactions.The journal delves into the relationship between homogeneous and heterogeneous catalysis and includes theoretical studies on the structure and reactivity of catalysts.Additionally, contributions on photocatalysis, biocatalysis, surface science, and catalysis-related chemical kinetics are welcomed.