为工程应用中的正常过程设计高效的自适应 EWMA 模型

IF 6 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
{"title":"为工程应用中的正常过程设计高效的自适应 EWMA 模型","authors":"","doi":"10.1016/j.asej.2024.102904","DOIUrl":null,"url":null,"abstract":"<div><p>Stability in process parameters is required to ensure the quality of the finished item. Control charts, as one of the critical parts of statistical process monitoring (<span><math><mrow><mi>SPM</mi></mrow></math></span>), have seen widespread use across many disciplines for detecting and responding to shifts in process parameters. The adaptive <span><math><mrow><mi>EWMA</mi></mrow></math></span> (<span><math><mrow><mi>AEWMA</mi></mrow></math></span>) control chart<!--> <!-->is a well-known scheme that detects both small and large process shifts by integrating the features of the Shewhart and classical <span><math><mrow><mi>EWMA</mi></mrow></math></span> charts. In this study, we propose an enhanced <span><math><mrow><mi>AEWMA</mi></mrow></math></span> chart, termed the <span><math><mrow><mi>EAEWMA</mi></mrow></math></span> chart, that efficiently monitors small and large process mean shifts simultaneously. The proposed <span><math><mrow><mi>E</mi><mi>A</mi><mi>E</mi><mi>W</mi><mi>M</mi><mi>A</mi></mrow></math></span> chart enhances the existing <span><math><mrow><mi>AEWMA</mi></mrow></math></span> chart using the shift estimator, based on the hybrid <span><math><mrow><mi>EWMA</mi></mrow></math></span> (<span><math><mrow><mi>HEWMA</mi></mrow></math></span>) statistic. The Monte Carlo simulation approach is employed as the computational method to obtain the numerical findings for the various performance metrics. The <span><math><mrow><mi>E</mi><mi>A</mi><mi>E</mi><mi>W</mi><mi>M</mi><mi>A</mi></mrow></math></span> chart is compared with various existing charts, including <span><math><mrow><mi>A</mi><mi>E</mi><mi>W</mi><mi>M</mi><mi>A</mi></mrow></math></span>, <span><math><mrow><mi>H</mi><mi>E</mi><mi>W</mi><mi>M</mi><mi>A</mi></mrow></math></span>, <span><math><mrow><mi>E</mi><mi>W</mi><mi>M</mi><mi>A</mi></mrow></math></span>, <span><math><mrow><mi>A</mi><mi>C</mi><mi>S</mi><mi>U</mi><mi>M</mi></mrow></math></span>, and <span><math><mrow><mi>I</mi><mi>A</mi><mi>C</mi><mi>C</mi><mi>U</mi><mi>S</mi><mi>U</mi><mi>M</mi></mrow></math></span>, in zero- and steady-state scenarios. Conclusively, two practical applications of the <span><math><mrow><mi>EAEWMA</mi></mrow></math></span> chart are presented, demonstrating its value for practitioners and engineers and illustrating its efficacy in real-world scenarios.</p></div>","PeriodicalId":48648,"journal":{"name":"Ain Shams Engineering Journal","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S209044792400279X/pdfft?md5=6d5f27f63151682d43b3f4e2bbdd8c75&pid=1-s2.0-S209044792400279X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Designing an efficient adaptive EWMA model for normal process with engineering applications\",\"authors\":\"\",\"doi\":\"10.1016/j.asej.2024.102904\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Stability in process parameters is required to ensure the quality of the finished item. Control charts, as one of the critical parts of statistical process monitoring (<span><math><mrow><mi>SPM</mi></mrow></math></span>), have seen widespread use across many disciplines for detecting and responding to shifts in process parameters. The adaptive <span><math><mrow><mi>EWMA</mi></mrow></math></span> (<span><math><mrow><mi>AEWMA</mi></mrow></math></span>) control chart<!--> <!-->is a well-known scheme that detects both small and large process shifts by integrating the features of the Shewhart and classical <span><math><mrow><mi>EWMA</mi></mrow></math></span> charts. In this study, we propose an enhanced <span><math><mrow><mi>AEWMA</mi></mrow></math></span> chart, termed the <span><math><mrow><mi>EAEWMA</mi></mrow></math></span> chart, that efficiently monitors small and large process mean shifts simultaneously. The proposed <span><math><mrow><mi>E</mi><mi>A</mi><mi>E</mi><mi>W</mi><mi>M</mi><mi>A</mi></mrow></math></span> chart enhances the existing <span><math><mrow><mi>AEWMA</mi></mrow></math></span> chart using the shift estimator, based on the hybrid <span><math><mrow><mi>EWMA</mi></mrow></math></span> (<span><math><mrow><mi>HEWMA</mi></mrow></math></span>) statistic. The Monte Carlo simulation approach is employed as the computational method to obtain the numerical findings for the various performance metrics. The <span><math><mrow><mi>E</mi><mi>A</mi><mi>E</mi><mi>W</mi><mi>M</mi><mi>A</mi></mrow></math></span> chart is compared with various existing charts, including <span><math><mrow><mi>A</mi><mi>E</mi><mi>W</mi><mi>M</mi><mi>A</mi></mrow></math></span>, <span><math><mrow><mi>H</mi><mi>E</mi><mi>W</mi><mi>M</mi><mi>A</mi></mrow></math></span>, <span><math><mrow><mi>E</mi><mi>W</mi><mi>M</mi><mi>A</mi></mrow></math></span>, <span><math><mrow><mi>A</mi><mi>C</mi><mi>S</mi><mi>U</mi><mi>M</mi></mrow></math></span>, and <span><math><mrow><mi>I</mi><mi>A</mi><mi>C</mi><mi>C</mi><mi>U</mi><mi>S</mi><mi>U</mi><mi>M</mi></mrow></math></span>, in zero- and steady-state scenarios. Conclusively, two practical applications of the <span><math><mrow><mi>EAEWMA</mi></mrow></math></span> chart are presented, demonstrating its value for practitioners and engineers and illustrating its efficacy in real-world scenarios.</p></div>\",\"PeriodicalId\":48648,\"journal\":{\"name\":\"Ain Shams Engineering Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S209044792400279X/pdfft?md5=6d5f27f63151682d43b3f4e2bbdd8c75&pid=1-s2.0-S209044792400279X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ain Shams Engineering Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S209044792400279X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ain Shams Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S209044792400279X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

工艺参数的稳定性是确保成品质量的必要条件。控制图作为统计过程监控(SPM)的重要组成部分之一,已在许多学科中得到广泛应用,用于检测和应对过程参数的变化。自适应 EWMA(AEWMA)控制图是一种著名的方案,它通过整合 Shewhart 控制图和经典 EWMA 控制图的特点来检测微小和巨大的过程变化。在本研究中,我们提出了一种增强型 AEWMA 控制图(称为 EAEWMA 控制图),它能同时有效监测小幅和大幅流程均值偏移。所提出的 EAEWMA 图表使用基于混合 EWMA(HEWMA)统计量的移动估计器增强了现有的 AEWMA 图表。计算方法采用蒙特卡罗模拟法,以获得各种性能指标的数值结果。EAEWMA 图表与各种现有图表(包括 AEWMA、HEWMA、EWMA、ACSUM 和 IACCUSUM)在零和稳态情况下进行了比较。最后,介绍了 EAEWMA 图表的两个实际应用,证明了它对从业人员和工程师的价值,并说明了它在现实世界场景中的功效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Designing an efficient adaptive EWMA model for normal process with engineering applications

Stability in process parameters is required to ensure the quality of the finished item. Control charts, as one of the critical parts of statistical process monitoring (SPM), have seen widespread use across many disciplines for detecting and responding to shifts in process parameters. The adaptive EWMA (AEWMA) control chart is a well-known scheme that detects both small and large process shifts by integrating the features of the Shewhart and classical EWMA charts. In this study, we propose an enhanced AEWMA chart, termed the EAEWMA chart, that efficiently monitors small and large process mean shifts simultaneously. The proposed EAEWMA chart enhances the existing AEWMA chart using the shift estimator, based on the hybrid EWMA (HEWMA) statistic. The Monte Carlo simulation approach is employed as the computational method to obtain the numerical findings for the various performance metrics. The EAEWMA chart is compared with various existing charts, including AEWMA, HEWMA, EWMA, ACSUM, and IACCUSUM, in zero- and steady-state scenarios. Conclusively, two practical applications of the EAEWMA chart are presented, demonstrating its value for practitioners and engineers and illustrating its efficacy in real-world scenarios.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ain Shams Engineering Journal
Ain Shams Engineering Journal Engineering-General Engineering
CiteScore
10.80
自引率
13.30%
发文量
441
审稿时长
49 weeks
期刊介绍: in Shams Engineering Journal is an international journal devoted to publication of peer reviewed original high-quality research papers and review papers in both traditional topics and those of emerging science and technology. Areas of both theoretical and fundamental interest as well as those concerning industrial applications, emerging instrumental techniques and those which have some practical application to an aspect of human endeavor, such as the preservation of the environment, health, waste disposal are welcome. The overall focus is on original and rigorous scientific research results which have generic significance. Ain Shams Engineering Journal focuses upon aspects of mechanical engineering, electrical engineering, civil engineering, chemical engineering, petroleum engineering, environmental engineering, architectural and urban planning engineering. Papers in which knowledge from other disciplines is integrated with engineering are especially welcome like nanotechnology, material sciences, and computational methods as well as applied basic sciences: engineering mathematics, physics and chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信