印度废旧电动汽车电池支持可再生能源发电的储能潜力

IF 4.4 2区 工程技术 Q2 ENERGY & FUELS
Rajat Chauhan , Ram Santran , Matevz Obrecht , Rhythm Singh
{"title":"印度废旧电动汽车电池支持可再生能源发电的储能潜力","authors":"Rajat Chauhan ,&nbsp;Ram Santran ,&nbsp;Matevz Obrecht ,&nbsp;Rhythm Singh","doi":"10.1016/j.esd.2024.101513","DOIUrl":null,"url":null,"abstract":"<div><p>As electric vehicle (EV) batteries degrade to 80 % of their full capacity, they become unsuitable for electric vehicle propulsion but remain viable for energy storage applications in solar and wind power plants. This study aims to estimate the energy storage potential of used-EV batteries for stationary applications in the Indian context. To estimate the renewable energy generation and used-EV capacity, the study adopted International Energy Agency (IEA) and International Council on Clean Transportation (ICCT) growth scenarios for renewable energy growth and electric vehicle growth, respectively. Battery degradation models for popular battery chemistries in electric vehicle mobility, namely Lithium Iron Phosphate, Lithium Manganese Oxide, and Nickel Manganese Cobalt, are employed to estimate reusable battery capacity. The first life for these battery chemistries, for mobility applications, ranges from 3.5 to 7 years. Results indicate an estimated storage potential of 1300–1870 GWh in used electric vehicle batteries in India by 2038. This is equivalent to 17 % – 39 % of average daily energy generation from solar and wind power plants in various scenarios by the year 2038. This research contributes to SDG-7 by facilitating clean energy accessibility through renewable energy storage and supports emission reduction efforts in transportation and energy sectors, thereby fostering sustainable cities (SDG-11).</p></div>","PeriodicalId":49209,"journal":{"name":"Energy for Sustainable Development","volume":"81 ","pages":"Article 101513"},"PeriodicalIF":4.4000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy storage potential of used electric vehicle batteries for supporting renewable energy generation in India\",\"authors\":\"Rajat Chauhan ,&nbsp;Ram Santran ,&nbsp;Matevz Obrecht ,&nbsp;Rhythm Singh\",\"doi\":\"10.1016/j.esd.2024.101513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>As electric vehicle (EV) batteries degrade to 80 % of their full capacity, they become unsuitable for electric vehicle propulsion but remain viable for energy storage applications in solar and wind power plants. This study aims to estimate the energy storage potential of used-EV batteries for stationary applications in the Indian context. To estimate the renewable energy generation and used-EV capacity, the study adopted International Energy Agency (IEA) and International Council on Clean Transportation (ICCT) growth scenarios for renewable energy growth and electric vehicle growth, respectively. Battery degradation models for popular battery chemistries in electric vehicle mobility, namely Lithium Iron Phosphate, Lithium Manganese Oxide, and Nickel Manganese Cobalt, are employed to estimate reusable battery capacity. The first life for these battery chemistries, for mobility applications, ranges from 3.5 to 7 years. Results indicate an estimated storage potential of 1300–1870 GWh in used electric vehicle batteries in India by 2038. This is equivalent to 17 % – 39 % of average daily energy generation from solar and wind power plants in various scenarios by the year 2038. This research contributes to SDG-7 by facilitating clean energy accessibility through renewable energy storage and supports emission reduction efforts in transportation and energy sectors, thereby fostering sustainable cities (SDG-11).</p></div>\",\"PeriodicalId\":49209,\"journal\":{\"name\":\"Energy for Sustainable Development\",\"volume\":\"81 \",\"pages\":\"Article 101513\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy for Sustainable Development\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S097308262400139X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy for Sustainable Development","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S097308262400139X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

随着电动汽车(EV)电池电量衰减至其全部容量的 80%,它们已不适合用于电动汽车推进,但仍可用于太阳能和风能发电厂的储能应用。本研究旨在估算印度废旧电动汽车电池在固定应用领域的储能潜力。为了估算可再生能源发电量和废旧电动汽车容量,研究分别采用了国际能源机构(IEA)和国际清洁交通理事会(ICCT)对可再生能源增长和电动汽车增长的预测。为估算可重复使用的电池容量,采用了电动汽车常用电池化学成分的电池降解模型,即磷酸铁锂、氧化锰锂和镍锰钴。这些电池化学物质在移动应用中的首次寿命为 3.5 至 7 年。结果表明,到 2038 年,印度废旧电动汽车电池的存储潜力估计为 1300-1870 GWh。这相当于到 2038 年各种情况下太阳能和风能发电厂日均发电量的 17% - 39%。这项研究有助于实现可持续发展目标 7,通过可再生能源存储促进清洁能源的可及性,并支持交通和能源部门的减排努力,从而促进可持续城市的发展(可持续发展目标 11)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Energy storage potential of used electric vehicle batteries for supporting renewable energy generation in India

Energy storage potential of used electric vehicle batteries for supporting renewable energy generation in India

As electric vehicle (EV) batteries degrade to 80 % of their full capacity, they become unsuitable for electric vehicle propulsion but remain viable for energy storage applications in solar and wind power plants. This study aims to estimate the energy storage potential of used-EV batteries for stationary applications in the Indian context. To estimate the renewable energy generation and used-EV capacity, the study adopted International Energy Agency (IEA) and International Council on Clean Transportation (ICCT) growth scenarios for renewable energy growth and electric vehicle growth, respectively. Battery degradation models for popular battery chemistries in electric vehicle mobility, namely Lithium Iron Phosphate, Lithium Manganese Oxide, and Nickel Manganese Cobalt, are employed to estimate reusable battery capacity. The first life for these battery chemistries, for mobility applications, ranges from 3.5 to 7 years. Results indicate an estimated storage potential of 1300–1870 GWh in used electric vehicle batteries in India by 2038. This is equivalent to 17 % – 39 % of average daily energy generation from solar and wind power plants in various scenarios by the year 2038. This research contributes to SDG-7 by facilitating clean energy accessibility through renewable energy storage and supports emission reduction efforts in transportation and energy sectors, thereby fostering sustainable cities (SDG-11).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy for Sustainable Development
Energy for Sustainable Development ENERGY & FUELS-ENERGY & FUELS
CiteScore
8.10
自引率
9.10%
发文量
187
审稿时长
6-12 weeks
期刊介绍: Published on behalf of the International Energy Initiative, Energy for Sustainable Development is the journal for decision makers, managers, consultants, policy makers, planners and researchers in both government and non-government organizations. It publishes original research and reviews about energy in developing countries, sustainable development, energy resources, technologies, policies and interactions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信