{"title":"聚乙烯醇对聚乙醇酸结晶的影响:分子间相互作用研究","authors":"","doi":"10.1016/j.tca.2024.179826","DOIUrl":null,"url":null,"abstract":"<div><p>The crystallization behavior and miscibility of blends between poly(glycolic acid) (PGA) and minority poly(vinyl alcohol) (PVA) with different saponification degrees have been studied. It was found that the melting point and crystallization ability of PGA in blends were remarkably depressed. During isothermal crystallization, introduction of PVA led to a decrease in both the Avrami index and the crystallization rate of PGA. The observation of spherulite morphology further revealed that the addition of PVA inhibited the growth of PGA spherulites, but increased the density of nucleation. Besides, PVA1788 with lower saponification degree displayed a stronger impact than PVA1799 on the crystallization of PGA. All blends exhibited a single composition-dependent glass transition temperature (<em>T</em><sub>g</sub>), characteristic of miscible systems. The <em>T</em><sub>g</sub>s fitted the Kwei equation well, and the calculated interaction parameters demonstrated the formation of intermolecular interactions between PGA and PVA and revealed the stronger interactions presenting in PGA/PVA1788 blends. FTIR investigation directly confirmed the effect of PVA on the carbonyl groups of PGA and PVA1788 played more roles than PVA1799. The interactions mainly form between carbonyl groups in PGA and hydroxyl groups in PVA1799, while latter ones change to carbonyl and hydroxyl groups in PVA1788.</p></div>","PeriodicalId":23058,"journal":{"name":"Thermochimica Acta","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of poly(vinyl alcohol) on poly(glycolic acid) crystallization: An investigation into intermolecular interactions\",\"authors\":\"\",\"doi\":\"10.1016/j.tca.2024.179826\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The crystallization behavior and miscibility of blends between poly(glycolic acid) (PGA) and minority poly(vinyl alcohol) (PVA) with different saponification degrees have been studied. It was found that the melting point and crystallization ability of PGA in blends were remarkably depressed. During isothermal crystallization, introduction of PVA led to a decrease in both the Avrami index and the crystallization rate of PGA. The observation of spherulite morphology further revealed that the addition of PVA inhibited the growth of PGA spherulites, but increased the density of nucleation. Besides, PVA1788 with lower saponification degree displayed a stronger impact than PVA1799 on the crystallization of PGA. All blends exhibited a single composition-dependent glass transition temperature (<em>T</em><sub>g</sub>), characteristic of miscible systems. The <em>T</em><sub>g</sub>s fitted the Kwei equation well, and the calculated interaction parameters demonstrated the formation of intermolecular interactions between PGA and PVA and revealed the stronger interactions presenting in PGA/PVA1788 blends. FTIR investigation directly confirmed the effect of PVA on the carbonyl groups of PGA and PVA1788 played more roles than PVA1799. The interactions mainly form between carbonyl groups in PGA and hydroxyl groups in PVA1799, while latter ones change to carbonyl and hydroxyl groups in PVA1788.</p></div>\",\"PeriodicalId\":23058,\"journal\":{\"name\":\"Thermochimica Acta\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thermochimica Acta\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0040603124001655\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermochimica Acta","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040603124001655","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Influence of poly(vinyl alcohol) on poly(glycolic acid) crystallization: An investigation into intermolecular interactions
The crystallization behavior and miscibility of blends between poly(glycolic acid) (PGA) and minority poly(vinyl alcohol) (PVA) with different saponification degrees have been studied. It was found that the melting point and crystallization ability of PGA in blends were remarkably depressed. During isothermal crystallization, introduction of PVA led to a decrease in both the Avrami index and the crystallization rate of PGA. The observation of spherulite morphology further revealed that the addition of PVA inhibited the growth of PGA spherulites, but increased the density of nucleation. Besides, PVA1788 with lower saponification degree displayed a stronger impact than PVA1799 on the crystallization of PGA. All blends exhibited a single composition-dependent glass transition temperature (Tg), characteristic of miscible systems. The Tgs fitted the Kwei equation well, and the calculated interaction parameters demonstrated the formation of intermolecular interactions between PGA and PVA and revealed the stronger interactions presenting in PGA/PVA1788 blends. FTIR investigation directly confirmed the effect of PVA on the carbonyl groups of PGA and PVA1788 played more roles than PVA1799. The interactions mainly form between carbonyl groups in PGA and hydroxyl groups in PVA1799, while latter ones change to carbonyl and hydroxyl groups in PVA1788.
期刊介绍:
Thermochimica Acta publishes original research contributions covering all aspects of thermoanalytical and calorimetric methods and their application to experimental chemistry, physics, biology and engineering. The journal aims to span the whole range from fundamental research to practical application.
The journal focuses on the research that advances physical and analytical science of thermal phenomena. Therefore, the manuscripts are expected to provide important insights into the thermal phenomena studied or to propose significant improvements of analytical or computational techniques employed in thermal studies. Manuscripts that report the results of routine thermal measurements are not suitable for publication in Thermochimica Acta.
The journal particularly welcomes papers from newly emerging areas as well as from the traditional strength areas:
- New and improved instrumentation and methods
- Thermal properties and behavior of materials
- Kinetics of thermally stimulated processes