{"title":"下框架和里兹-菲舍尔序列的无界算子理论方法","authors":"Peter Balazs, Mitra Shamsabadi","doi":"10.1016/j.acha.2024.101685","DOIUrl":null,"url":null,"abstract":"<div><p>Frames and orthonormal bases are important concepts in functional analysis and linear algebra. They are naturally linked to bounded operators. To describe unbounded operators those sequences might not be well suited. This has already been noted by von Neumann in the 1920ies. But modern frame theory also investigates other sequences, including those that are not naturally linked to bounded operators. The focus of this manuscript will be two such kind of sequences: lower frame and Riesz-Fischer sequences. We will discuss the inter-relation of those sequences. We will fill a hole existing in the literature regarding the classification of these sequences by their synthesis operator. We will use the idea of generalized frame operator and Gram matrix and extend it. We will use that to show properties for canonical duals for lower frame sequences, such as a minimality condition regarding its coefficients. We will also show that other results that are known for frames can be generalized to lower frame sequences. Finally, we show that the converse of a well-known result is true, i.e. that minimal lower frame sequences are equivalent to complete Riesz-Fischer sequences, without any further assumptions.</p><p>To be able to tackle these tasks, we had to revisit the concept of invertibility (in particular for non-closed operators). In addition, we are able to define a particular adjoint, which is uniquely defined for any operator.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"73 ","pages":"Article 101685"},"PeriodicalIF":2.6000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An unbounded operator theory approach to lower frame and Riesz-Fischer sequences\",\"authors\":\"Peter Balazs, Mitra Shamsabadi\",\"doi\":\"10.1016/j.acha.2024.101685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Frames and orthonormal bases are important concepts in functional analysis and linear algebra. They are naturally linked to bounded operators. To describe unbounded operators those sequences might not be well suited. This has already been noted by von Neumann in the 1920ies. But modern frame theory also investigates other sequences, including those that are not naturally linked to bounded operators. The focus of this manuscript will be two such kind of sequences: lower frame and Riesz-Fischer sequences. We will discuss the inter-relation of those sequences. We will fill a hole existing in the literature regarding the classification of these sequences by their synthesis operator. We will use the idea of generalized frame operator and Gram matrix and extend it. We will use that to show properties for canonical duals for lower frame sequences, such as a minimality condition regarding its coefficients. We will also show that other results that are known for frames can be generalized to lower frame sequences. Finally, we show that the converse of a well-known result is true, i.e. that minimal lower frame sequences are equivalent to complete Riesz-Fischer sequences, without any further assumptions.</p><p>To be able to tackle these tasks, we had to revisit the concept of invertibility (in particular for non-closed operators). In addition, we are able to define a particular adjoint, which is uniquely defined for any operator.</p></div>\",\"PeriodicalId\":55504,\"journal\":{\"name\":\"Applied and Computational Harmonic Analysis\",\"volume\":\"73 \",\"pages\":\"Article 101685\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Computational Harmonic Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1063520324000629\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1063520324000629","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
An unbounded operator theory approach to lower frame and Riesz-Fischer sequences
Frames and orthonormal bases are important concepts in functional analysis and linear algebra. They are naturally linked to bounded operators. To describe unbounded operators those sequences might not be well suited. This has already been noted by von Neumann in the 1920ies. But modern frame theory also investigates other sequences, including those that are not naturally linked to bounded operators. The focus of this manuscript will be two such kind of sequences: lower frame and Riesz-Fischer sequences. We will discuss the inter-relation of those sequences. We will fill a hole existing in the literature regarding the classification of these sequences by their synthesis operator. We will use the idea of generalized frame operator and Gram matrix and extend it. We will use that to show properties for canonical duals for lower frame sequences, such as a minimality condition regarding its coefficients. We will also show that other results that are known for frames can be generalized to lower frame sequences. Finally, we show that the converse of a well-known result is true, i.e. that minimal lower frame sequences are equivalent to complete Riesz-Fischer sequences, without any further assumptions.
To be able to tackle these tasks, we had to revisit the concept of invertibility (in particular for non-closed operators). In addition, we are able to define a particular adjoint, which is uniquely defined for any operator.
期刊介绍:
Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.