M. Tur , S. Gregori , A. Correcher , J. Gil , A. Pedrosa , F.J. Fuenmayor
{"title":"一般架空接触线几何形状的硬件在环受电弓测试","authors":"M. Tur , S. Gregori , A. Correcher , J. Gil , A. Pedrosa , F.J. Fuenmayor","doi":"10.1016/j.mechatronics.2024.103231","DOIUrl":null,"url":null,"abstract":"<div><p>Hardware-in-the-loop testing serves as a method to examine the dynamic interaction between the pantograph and catenary within controlled laboratory environments. This task involves measuring the force from the pantograph, using a real-time catenary model to determine the next pantograph position, and generating the desired pantograph movement to complete the loop. To address potential instability issues arising from communication delays and the inherent stiffness in the interaction with pantograph strips, a mass–spring system and a Linear Quadratic Gaussian controller are integrated into the system. The catenary is a finite element model of a complete section, incorporating the non-linearity introduced by dropper slackening. Validation of the results demonstrates a good level of accuracy in the HiL test approach within the frequency range of 0–20 Hz.</p></div>","PeriodicalId":49842,"journal":{"name":"Mechatronics","volume":"102 ","pages":"Article 103231"},"PeriodicalIF":3.1000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0957415824000965/pdfft?md5=818d5ca15036a03ce198927966b79964&pid=1-s2.0-S0957415824000965-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Hardware-in-the-Loop pantograph tests with general overhead contact line geometry\",\"authors\":\"M. Tur , S. Gregori , A. Correcher , J. Gil , A. Pedrosa , F.J. Fuenmayor\",\"doi\":\"10.1016/j.mechatronics.2024.103231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Hardware-in-the-loop testing serves as a method to examine the dynamic interaction between the pantograph and catenary within controlled laboratory environments. This task involves measuring the force from the pantograph, using a real-time catenary model to determine the next pantograph position, and generating the desired pantograph movement to complete the loop. To address potential instability issues arising from communication delays and the inherent stiffness in the interaction with pantograph strips, a mass–spring system and a Linear Quadratic Gaussian controller are integrated into the system. The catenary is a finite element model of a complete section, incorporating the non-linearity introduced by dropper slackening. Validation of the results demonstrates a good level of accuracy in the HiL test approach within the frequency range of 0–20 Hz.</p></div>\",\"PeriodicalId\":49842,\"journal\":{\"name\":\"Mechatronics\",\"volume\":\"102 \",\"pages\":\"Article 103231\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0957415824000965/pdfft?md5=818d5ca15036a03ce198927966b79964&pid=1-s2.0-S0957415824000965-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechatronics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0957415824000965\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechatronics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957415824000965","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Hardware-in-the-Loop pantograph tests with general overhead contact line geometry
Hardware-in-the-loop testing serves as a method to examine the dynamic interaction between the pantograph and catenary within controlled laboratory environments. This task involves measuring the force from the pantograph, using a real-time catenary model to determine the next pantograph position, and generating the desired pantograph movement to complete the loop. To address potential instability issues arising from communication delays and the inherent stiffness in the interaction with pantograph strips, a mass–spring system and a Linear Quadratic Gaussian controller are integrated into the system. The catenary is a finite element model of a complete section, incorporating the non-linearity introduced by dropper slackening. Validation of the results demonstrates a good level of accuracy in the HiL test approach within the frequency range of 0–20 Hz.
期刊介绍:
Mechatronics is the synergistic combination of precision mechanical engineering, electronic control and systems thinking in the design of products and manufacturing processes. It relates to the design of systems, devices and products aimed at achieving an optimal balance between basic mechanical structure and its overall control. The purpose of this journal is to provide rapid publication of topical papers featuring practical developments in mechatronics. It will cover a wide range of application areas including consumer product design, instrumentation, manufacturing methods, computer integration and process and device control, and will attract a readership from across the industrial and academic research spectrum. Particular importance will be attached to aspects of innovation in mechatronics design philosophy which illustrate the benefits obtainable by an a priori integration of functionality with embedded microprocessor control. A major item will be the design of machines, devices and systems possessing a degree of computer based intelligence. The journal seeks to publish research progress in this field with an emphasis on the applied rather than the theoretical. It will also serve the dual role of bringing greater recognition to this important area of engineering.