Nada J. Daood, Daniel P. Russo, Elena Chung, Xuebin Qin and Hao Zhu*,
{"title":"通过数据驱动的芳基烃受体激动及相关毒性机制 QSAR 建模预测化学物质的免疫毒性","authors":"Nada J. Daood, Daniel P. Russo, Elena Chung, Xuebin Qin and Hao Zhu*, ","doi":"10.1021/envhealth.4c00026","DOIUrl":null,"url":null,"abstract":"<p >Computational modeling has emerged as a time-saving and cost-effective alternative to traditional animal testing for assessing chemicals for their potential hazards. However, few computational modeling studies for immunotoxicity were reported, with few models available for predicting toxicants due to the lack of training data and the complex mechanisms of immunotoxicity. In this study, we employed a data-driven quantitative structure–activity relationship (QSAR) modeling workflow to extensively enlarge the limited training data by revealing multiple targets involved in immunotoxicity. To this end, a probe data set of 6,341 chemicals was obtained from a high-throughput screening (HTS) assay testing for the activation of the aryl hydrocarbon receptor (AhR) signaling pathway, a key event leading to immunotoxicity. Searching this probe data set against PubChem yielded 3,183 assays with testing results for varying proportions of these 6,341 compounds. 100 assays were selected to develop QSAR models based on their correlations to AhR agonism. Twelve individual QSAR models were built for each assay using combinations of four machine-learning algorithms and three molecular fingerprints. 5-fold cross-validation of the resulting models showed good predictivity (average CCR = 0.73). A total of 20 assays were further selected based on QSAR model performance, and their resulting QSAR models showed good predictivity of potential immunotoxicants from external chemicals. This study provides a computational modeling strategy that can utilize large public toxicity data sets for modeling immunotoxicity and other toxicity endpoints, which have limited training data and complicated toxicity mechanisms.</p>","PeriodicalId":29795,"journal":{"name":"Environment & Health","volume":"2 7","pages":"474–485"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/envhealth.4c00026","citationCount":"0","resultStr":"{\"title\":\"Predicting Chemical Immunotoxicity through Data-Driven QSAR Modeling of Aryl Hydrocarbon Receptor Agonism and Related Toxicity Mechanisms\",\"authors\":\"Nada J. Daood, Daniel P. Russo, Elena Chung, Xuebin Qin and Hao Zhu*, \",\"doi\":\"10.1021/envhealth.4c00026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Computational modeling has emerged as a time-saving and cost-effective alternative to traditional animal testing for assessing chemicals for their potential hazards. However, few computational modeling studies for immunotoxicity were reported, with few models available for predicting toxicants due to the lack of training data and the complex mechanisms of immunotoxicity. In this study, we employed a data-driven quantitative structure–activity relationship (QSAR) modeling workflow to extensively enlarge the limited training data by revealing multiple targets involved in immunotoxicity. To this end, a probe data set of 6,341 chemicals was obtained from a high-throughput screening (HTS) assay testing for the activation of the aryl hydrocarbon receptor (AhR) signaling pathway, a key event leading to immunotoxicity. Searching this probe data set against PubChem yielded 3,183 assays with testing results for varying proportions of these 6,341 compounds. 100 assays were selected to develop QSAR models based on their correlations to AhR agonism. Twelve individual QSAR models were built for each assay using combinations of four machine-learning algorithms and three molecular fingerprints. 5-fold cross-validation of the resulting models showed good predictivity (average CCR = 0.73). A total of 20 assays were further selected based on QSAR model performance, and their resulting QSAR models showed good predictivity of potential immunotoxicants from external chemicals. This study provides a computational modeling strategy that can utilize large public toxicity data sets for modeling immunotoxicity and other toxicity endpoints, which have limited training data and complicated toxicity mechanisms.</p>\",\"PeriodicalId\":29795,\"journal\":{\"name\":\"Environment & Health\",\"volume\":\"2 7\",\"pages\":\"474–485\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/envhealth.4c00026\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environment & Health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/envhealth.4c00026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environment & Health","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/envhealth.4c00026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Predicting Chemical Immunotoxicity through Data-Driven QSAR Modeling of Aryl Hydrocarbon Receptor Agonism and Related Toxicity Mechanisms
Computational modeling has emerged as a time-saving and cost-effective alternative to traditional animal testing for assessing chemicals for their potential hazards. However, few computational modeling studies for immunotoxicity were reported, with few models available for predicting toxicants due to the lack of training data and the complex mechanisms of immunotoxicity. In this study, we employed a data-driven quantitative structure–activity relationship (QSAR) modeling workflow to extensively enlarge the limited training data by revealing multiple targets involved in immunotoxicity. To this end, a probe data set of 6,341 chemicals was obtained from a high-throughput screening (HTS) assay testing for the activation of the aryl hydrocarbon receptor (AhR) signaling pathway, a key event leading to immunotoxicity. Searching this probe data set against PubChem yielded 3,183 assays with testing results for varying proportions of these 6,341 compounds. 100 assays were selected to develop QSAR models based on their correlations to AhR agonism. Twelve individual QSAR models were built for each assay using combinations of four machine-learning algorithms and three molecular fingerprints. 5-fold cross-validation of the resulting models showed good predictivity (average CCR = 0.73). A total of 20 assays were further selected based on QSAR model performance, and their resulting QSAR models showed good predictivity of potential immunotoxicants from external chemicals. This study provides a computational modeling strategy that can utilize large public toxicity data sets for modeling immunotoxicity and other toxicity endpoints, which have limited training data and complicated toxicity mechanisms.
期刊介绍:
Environment & Health a peer-reviewed open access journal is committed to exploring the relationship between the environment and human health.As a premier journal for multidisciplinary research Environment & Health reports the health consequences for individuals and communities of changing and hazardous environmental factors. In supporting the UN Sustainable Development Goals the journal aims to help formulate policies to create a healthier world.Topics of interest include but are not limited to:Air water and soil pollutionExposomicsEnvironmental epidemiologyInnovative analytical methodology and instrumentation (multi-omics non-target analysis effect-directed analysis high-throughput screening etc.)Environmental toxicology (endocrine disrupting effect neurotoxicity alternative toxicology computational toxicology epigenetic toxicology etc.)Environmental microbiology pathogen and environmental transmission mechanisms of diseasesEnvironmental modeling bioinformatics and artificial intelligenceEmerging contaminants (including plastics engineered nanomaterials etc.)Climate change and related health effectHealth impacts of energy evolution and carbon neutralizationFood and drinking water safetyOccupational exposure and medicineInnovations in environmental technologies for better healthPolicies and international relations concerned with environmental health