从感知到适应:膜脂重塑在植物应对低温中的作用

IF 6.5 1区 生物学 Q1 PLANT SCIENCES
Zachery D Shomo, Fangyi Li, Cailin N Smith, Sydney R Edmonds, Rebecca L Roston
{"title":"从感知到适应:膜脂重塑在植物应对低温中的作用","authors":"Zachery D Shomo, Fangyi Li, Cailin N Smith, Sydney R Edmonds, Rebecca L Roston","doi":"10.1093/plphys/kiae382","DOIUrl":null,"url":null,"abstract":"<p><p>Low temperatures pose a dramatic challenge to plant viability. Chilling and freezing disrupt cellular processes, forcing metabolic adaptations reflected in alterations to membrane compositions. Understanding the mechanisms of plant cold tolerance is increasingly important due to anticipated increases in the frequency, severity, and duration of cold events. This review synthesizes current knowledge on the adaptive changes of membrane glycerolipids, sphingolipids, and phytosterols in response to cold stress. We delve into key mechanisms of low-temperature membrane remodeling, including acyl editing and headgroup exchange, lipase activity, and phytosterol abundance changes, focusing on their impact at the subcellular level. Furthermore, we tabulate and analyze current gycerolipidomic data from cold treatments of Arabidopsis, maize, and sorghum. This analysis highlights congruencies of lipid abundance changes in response to varying degrees of cold stress. Ultimately, this review aids in rationalizing observed lipid fluctuations and pinpoints key gaps in our current capacity to fully understand how plants orchestrate these membrane responses to cold stress.</p>","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":null,"pages":null},"PeriodicalIF":6.5000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From sensing to acclimation: The role of membrane lipid remodeling in plant responses to low temperatures.\",\"authors\":\"Zachery D Shomo, Fangyi Li, Cailin N Smith, Sydney R Edmonds, Rebecca L Roston\",\"doi\":\"10.1093/plphys/kiae382\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Low temperatures pose a dramatic challenge to plant viability. Chilling and freezing disrupt cellular processes, forcing metabolic adaptations reflected in alterations to membrane compositions. Understanding the mechanisms of plant cold tolerance is increasingly important due to anticipated increases in the frequency, severity, and duration of cold events. This review synthesizes current knowledge on the adaptive changes of membrane glycerolipids, sphingolipids, and phytosterols in response to cold stress. We delve into key mechanisms of low-temperature membrane remodeling, including acyl editing and headgroup exchange, lipase activity, and phytosterol abundance changes, focusing on their impact at the subcellular level. Furthermore, we tabulate and analyze current gycerolipidomic data from cold treatments of Arabidopsis, maize, and sorghum. This analysis highlights congruencies of lipid abundance changes in response to varying degrees of cold stress. Ultimately, this review aids in rationalizing observed lipid fluctuations and pinpoints key gaps in our current capacity to fully understand how plants orchestrate these membrane responses to cold stress.</p>\",\"PeriodicalId\":20101,\"journal\":{\"name\":\"Plant Physiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/plphys/kiae382\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plphys/kiae382","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

低温对植物的生存能力构成了巨大挑战。寒冷和冰冻会破坏细胞过程,迫使新陈代谢发生适应性变化,这反映在膜组成的改变上。由于寒冷事件的频率、严重程度和持续时间预计会增加,因此了解植物耐寒机制变得越来越重要。本综述综合了目前有关膜甘油三酯、鞘脂和植物甾醇在应对寒冷胁迫时的适应性变化的知识。我们深入研究了低温膜重塑的关键机制,包括酰基编辑和头基交换、脂肪酶活性和植物甾醇丰度变化,重点关注它们在亚细胞水平的影响。此外,我们还列表分析了拟南芥、玉米和高粱低温处理的现有甘油酯组数据。这一分析凸显了不同程度的冷胁迫下脂质丰度变化的一致性。最终,这篇综述有助于合理解释观察到的脂质波动,并指出我们目前在充分了解植物如何协调这些膜对冷胁迫的反应方面存在的主要差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
From sensing to acclimation: The role of membrane lipid remodeling in plant responses to low temperatures.

Low temperatures pose a dramatic challenge to plant viability. Chilling and freezing disrupt cellular processes, forcing metabolic adaptations reflected in alterations to membrane compositions. Understanding the mechanisms of plant cold tolerance is increasingly important due to anticipated increases in the frequency, severity, and duration of cold events. This review synthesizes current knowledge on the adaptive changes of membrane glycerolipids, sphingolipids, and phytosterols in response to cold stress. We delve into key mechanisms of low-temperature membrane remodeling, including acyl editing and headgroup exchange, lipase activity, and phytosterol abundance changes, focusing on their impact at the subcellular level. Furthermore, we tabulate and analyze current gycerolipidomic data from cold treatments of Arabidopsis, maize, and sorghum. This analysis highlights congruencies of lipid abundance changes in response to varying degrees of cold stress. Ultimately, this review aids in rationalizing observed lipid fluctuations and pinpoints key gaps in our current capacity to fully understand how plants orchestrate these membrane responses to cold stress.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Physiology
Plant Physiology 生物-植物科学
CiteScore
12.20
自引率
5.40%
发文量
535
审稿时长
2.3 months
期刊介绍: Plant Physiology® is a distinguished and highly respected journal with a rich history dating back to its establishment in 1926. It stands as a leading international publication in the field of plant biology, covering a comprehensive range of topics from the molecular and structural aspects of plant life to systems biology and ecophysiology. Recognized as the most highly cited journal in plant sciences, Plant Physiology® is a testament to its commitment to excellence and the dissemination of groundbreaking research. As the official publication of the American Society of Plant Biologists, Plant Physiology® upholds rigorous peer-review standards, ensuring that the scientific community receives the highest quality research. The journal releases 12 issues annually, providing a steady stream of new findings and insights to its readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信