Jia-Wern Pan, Zi-Ching Tan, Pei-Sze Ng, Muhammad Mamduh Ahmad Zabidi, Putri Nur Fatin, Jie-Ying Teo, Siti Norhidayu Hasan, Tania Islam, Li-Ying Teoh, Suniza Jamaris, Mee-Hoong See, Cheng-Har Yip, Pathmanathan Rajadurai, Lai-Meng Looi, Nur Aishah Mohd Taib, Oscar M Rueda, Carlos Caldas, Suet-Feung Chin, Joanna Lim, Soo-Hwang Teo
{"title":"预测三阴性乳腺癌同源重组缺陷的基因表达特征。","authors":"Jia-Wern Pan, Zi-Ching Tan, Pei-Sze Ng, Muhammad Mamduh Ahmad Zabidi, Putri Nur Fatin, Jie-Ying Teo, Siti Norhidayu Hasan, Tania Islam, Li-Ying Teoh, Suniza Jamaris, Mee-Hoong See, Cheng-Har Yip, Pathmanathan Rajadurai, Lai-Meng Looi, Nur Aishah Mohd Taib, Oscar M Rueda, Carlos Caldas, Suet-Feung Chin, Joanna Lim, Soo-Hwang Teo","doi":"10.1038/s41523-024-00671-1","DOIUrl":null,"url":null,"abstract":"<p><p>Triple-negative breast cancers (TNBCs) are a subset of breast cancers that have remained difficult to treat. A proportion of TNBCs arising in non-carriers of BRCA pathogenic variants have genomic features that are similar to BRCA carriers and may also benefit from PARP inhibitor treatment. Using genomic data from 129 TNBC samples from the Malaysian Breast Cancer (MyBrCa) cohort, we developed a gene expression-based machine learning classifier for homologous recombination deficiency (HRD) in TNBCs. The classifier identified samples with HRD mutational signature at an AUROC of 0.93 in MyBrCa validation datasets and 0.84 in TCGA TNBCs. Additionally, the classifier strongly segregated HRD-associated genomic features in TNBCs from TCGA, METABRIC, and ICGC. Thus, our gene expression classifier may identify triple-negative breast cancer patients with homologous recombination deficiency, suggesting an alternative method to identify individuals who may benefit from treatment with PARP inhibitors or platinum chemotherapy.</p>","PeriodicalId":19247,"journal":{"name":"NPJ Breast Cancer","volume":"10 1","pages":"60"},"PeriodicalIF":6.5000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11271517/pdf/","citationCount":"0","resultStr":"{\"title\":\"Gene expression signature for predicting homologous recombination deficiency in triple-negative breast cancer.\",\"authors\":\"Jia-Wern Pan, Zi-Ching Tan, Pei-Sze Ng, Muhammad Mamduh Ahmad Zabidi, Putri Nur Fatin, Jie-Ying Teo, Siti Norhidayu Hasan, Tania Islam, Li-Ying Teoh, Suniza Jamaris, Mee-Hoong See, Cheng-Har Yip, Pathmanathan Rajadurai, Lai-Meng Looi, Nur Aishah Mohd Taib, Oscar M Rueda, Carlos Caldas, Suet-Feung Chin, Joanna Lim, Soo-Hwang Teo\",\"doi\":\"10.1038/s41523-024-00671-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Triple-negative breast cancers (TNBCs) are a subset of breast cancers that have remained difficult to treat. A proportion of TNBCs arising in non-carriers of BRCA pathogenic variants have genomic features that are similar to BRCA carriers and may also benefit from PARP inhibitor treatment. Using genomic data from 129 TNBC samples from the Malaysian Breast Cancer (MyBrCa) cohort, we developed a gene expression-based machine learning classifier for homologous recombination deficiency (HRD) in TNBCs. The classifier identified samples with HRD mutational signature at an AUROC of 0.93 in MyBrCa validation datasets and 0.84 in TCGA TNBCs. Additionally, the classifier strongly segregated HRD-associated genomic features in TNBCs from TCGA, METABRIC, and ICGC. Thus, our gene expression classifier may identify triple-negative breast cancer patients with homologous recombination deficiency, suggesting an alternative method to identify individuals who may benefit from treatment with PARP inhibitors or platinum chemotherapy.</p>\",\"PeriodicalId\":19247,\"journal\":{\"name\":\"NPJ Breast Cancer\",\"volume\":\"10 1\",\"pages\":\"60\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11271517/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Breast Cancer\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41523-024-00671-1\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Breast Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41523-024-00671-1","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
Gene expression signature for predicting homologous recombination deficiency in triple-negative breast cancer.
Triple-negative breast cancers (TNBCs) are a subset of breast cancers that have remained difficult to treat. A proportion of TNBCs arising in non-carriers of BRCA pathogenic variants have genomic features that are similar to BRCA carriers and may also benefit from PARP inhibitor treatment. Using genomic data from 129 TNBC samples from the Malaysian Breast Cancer (MyBrCa) cohort, we developed a gene expression-based machine learning classifier for homologous recombination deficiency (HRD) in TNBCs. The classifier identified samples with HRD mutational signature at an AUROC of 0.93 in MyBrCa validation datasets and 0.84 in TCGA TNBCs. Additionally, the classifier strongly segregated HRD-associated genomic features in TNBCs from TCGA, METABRIC, and ICGC. Thus, our gene expression classifier may identify triple-negative breast cancer patients with homologous recombination deficiency, suggesting an alternative method to identify individuals who may benefit from treatment with PARP inhibitors or platinum chemotherapy.
期刊介绍:
npj Breast Cancer publishes original research articles, reviews, brief correspondence, meeting reports, editorial summaries and hypothesis generating observations which could be unexplained or preliminary findings from experiments, novel ideas, or the framing of new questions that need to be solved. Featured topics of the journal include imaging, immunotherapy, molecular classification of disease, mechanism-based therapies largely targeting signal transduction pathways, carcinogenesis including hereditary susceptibility and molecular epidemiology, survivorship issues including long-term toxicities of treatment and secondary neoplasm occurrence, the biophysics of cancer, mechanisms of metastasis and their perturbation, and studies of the tumor microenvironment.