{"title":"非诺贝特和三尖杉酯的原位顺序结晶--从结晶的角度了解原料药在颗粒中的分布和固体脂质微粒的稳定性。","authors":"","doi":"10.1016/j.ejpb.2024.114413","DOIUrl":null,"url":null,"abstract":"<div><p><em>In-situ</em> API crystallization in carrier matrices has attracted extensive attention in recent years for its advantages over traditional preparation processes. However, due to the lack of systemic research on molecular self-assembly behaviors, the products obtained by <em>in-situ</em> crystallization suffer from the problems of polymorphic transformation and drug expulsion during storage, limiting its industrial application. This paper investigates the <em>in-situ</em> sequential crystallization behavior of tristearin (SSS) and fenofibrate (FEN), utilizing SSS as the carrier and FEN as the API. It was found that the behavior of mixed crystallization significantly differs from single-component crystallization, including direct formation of stable form of SSS and the rapid crystallization of FEN. During the crystallization process, the melting FEN promotes the movement of SSS molecules, while the sliding of SSS lamellae, in turn, provides a mechanical stimulus to enhance the nucleation of FEN. Based on the observed synergistic crystallization behavior, the distribution and stability of the API within FEN solid lipid microparticles (SLMs) during storage were evaluated, while also examining the stability variations in SLMs formulated at different cooling rates and drug loading concentrations. The findings indicate that the initial nucleated FEN results in a decrease in the surrounding molten FEN and the irregularity of the SSS lamellas, thereby preventing the remaining molten FEN from achieving complete crystallization within a brief period. Due to the compatibility between FEN and SSS, some SSS may blend with the molten FEN, potentially resulting in further crystallization during storage and consequently increasing the risk of drug expulsion.</p></div>","PeriodicalId":12024,"journal":{"name":"European Journal of Pharmaceutics and Biopharmaceutics","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In-situ sequential crystallization of fenofibrate and tristearin – Understanding the distribution of API in particles and stability of solid lipid microparticles from the perspective of crystallization\",\"authors\":\"\",\"doi\":\"10.1016/j.ejpb.2024.114413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><em>In-situ</em> API crystallization in carrier matrices has attracted extensive attention in recent years for its advantages over traditional preparation processes. However, due to the lack of systemic research on molecular self-assembly behaviors, the products obtained by <em>in-situ</em> crystallization suffer from the problems of polymorphic transformation and drug expulsion during storage, limiting its industrial application. This paper investigates the <em>in-situ</em> sequential crystallization behavior of tristearin (SSS) and fenofibrate (FEN), utilizing SSS as the carrier and FEN as the API. It was found that the behavior of mixed crystallization significantly differs from single-component crystallization, including direct formation of stable form of SSS and the rapid crystallization of FEN. During the crystallization process, the melting FEN promotes the movement of SSS molecules, while the sliding of SSS lamellae, in turn, provides a mechanical stimulus to enhance the nucleation of FEN. Based on the observed synergistic crystallization behavior, the distribution and stability of the API within FEN solid lipid microparticles (SLMs) during storage were evaluated, while also examining the stability variations in SLMs formulated at different cooling rates and drug loading concentrations. The findings indicate that the initial nucleated FEN results in a decrease in the surrounding molten FEN and the irregularity of the SSS lamellas, thereby preventing the remaining molten FEN from achieving complete crystallization within a brief period. Due to the compatibility between FEN and SSS, some SSS may blend with the molten FEN, potentially resulting in further crystallization during storage and consequently increasing the risk of drug expulsion.</p></div>\",\"PeriodicalId\":12024,\"journal\":{\"name\":\"European Journal of Pharmaceutics and Biopharmaceutics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Pharmaceutics and Biopharmaceutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S093964112400239X\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pharmaceutics and Biopharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S093964112400239X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
In-situ sequential crystallization of fenofibrate and tristearin – Understanding the distribution of API in particles and stability of solid lipid microparticles from the perspective of crystallization
In-situ API crystallization in carrier matrices has attracted extensive attention in recent years for its advantages over traditional preparation processes. However, due to the lack of systemic research on molecular self-assembly behaviors, the products obtained by in-situ crystallization suffer from the problems of polymorphic transformation and drug expulsion during storage, limiting its industrial application. This paper investigates the in-situ sequential crystallization behavior of tristearin (SSS) and fenofibrate (FEN), utilizing SSS as the carrier and FEN as the API. It was found that the behavior of mixed crystallization significantly differs from single-component crystallization, including direct formation of stable form of SSS and the rapid crystallization of FEN. During the crystallization process, the melting FEN promotes the movement of SSS molecules, while the sliding of SSS lamellae, in turn, provides a mechanical stimulus to enhance the nucleation of FEN. Based on the observed synergistic crystallization behavior, the distribution and stability of the API within FEN solid lipid microparticles (SLMs) during storage were evaluated, while also examining the stability variations in SLMs formulated at different cooling rates and drug loading concentrations. The findings indicate that the initial nucleated FEN results in a decrease in the surrounding molten FEN and the irregularity of the SSS lamellas, thereby preventing the remaining molten FEN from achieving complete crystallization within a brief period. Due to the compatibility between FEN and SSS, some SSS may blend with the molten FEN, potentially resulting in further crystallization during storage and consequently increasing the risk of drug expulsion.
期刊介绍:
The European Journal of Pharmaceutics and Biopharmaceutics provides a medium for the publication of novel, innovative and hypothesis-driven research from the areas of Pharmaceutics and Biopharmaceutics.
Topics covered include for example:
Design and development of drug delivery systems for pharmaceuticals and biopharmaceuticals (small molecules, proteins, nucleic acids)
Aspects of manufacturing process design
Biomedical aspects of drug product design
Strategies and formulations for controlled drug transport across biological barriers
Physicochemical aspects of drug product development
Novel excipients for drug product design
Drug delivery and controlled release systems for systemic and local applications
Nanomaterials for therapeutic and diagnostic purposes
Advanced therapy medicinal products
Medical devices supporting a distinct pharmacological effect.