{"title":"与嘧啶-吲哚 BF3 加成衍生物桥接的 BF3-o,m,p-苯二胺的设计、合成和抗肿瘤活性评估。","authors":"Meng Zhou, Xiujie Duan, Tao Jin, Xibing Feng, Ying Liu, Shuo Wang, Jiankang Feng, Mengtong Zhang, Tiantian Chai, Boneng Mao, Shihe Shao, Guofan Jin","doi":"10.1007/s11030-024-10863-3","DOIUrl":null,"url":null,"abstract":"<p><p>Fluorescent drugs and pyrimidine-indole scaffolds have been shown to have advantages in cancer treatment. Fluorescent antitumor drugs BF<sub>3</sub>-o, m, p-phenylenediamine pyrimidine-indole derivatives (PYB1, PYB2, and PYB3) were synthesized by linking pyrimidine and indole groups with aniline through a simple step and introducing BF<sub>3</sub>. The drugs exhibit promising antitumor activity and their fluorescent properties make them useful for imaging purposes. The optical properties of the three compounds have been investigated. All of them have fluorescent properties and compound PYB2 has good fluorescent properties. Additionally, the in vitro cytotoxicity of these compounds was evaluated against the human cancer cell line HeLa and the human normal cell line L02. The inhibition rates of HeLa cells treated with PYB1, PYB2, and PYB3 at a concentration of 19.2 μg/mL were 80.91%, 77.72%, and 65.94%, respectively. These results indicate a strong inhibitory effect on cancer cells. Further through the cell imaging experiment, we can see that PYB2 can enter the cell through the cell membrane through the fluorescence scattering diagram, which has good biocompatibility. In addition, the possible interactions between the compounds and Ras protein active sites were analyzed by molecular docking. The three compounds can bind well to Ras protein through hydrogen bonding. This study provides a basis for the development and modification of pyrimidine-indole fluorescent anticancer drugs. Compound PYB2 shows potential as a fluorescent anticancer drug.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design, synthesis, and antitumor activity evaluation of BF<sub>3</sub>-o, m, p-phenylenediamine bridged with pyrimidine-indole BF<sub>3</sub> adduction derivatives.\",\"authors\":\"Meng Zhou, Xiujie Duan, Tao Jin, Xibing Feng, Ying Liu, Shuo Wang, Jiankang Feng, Mengtong Zhang, Tiantian Chai, Boneng Mao, Shihe Shao, Guofan Jin\",\"doi\":\"10.1007/s11030-024-10863-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fluorescent drugs and pyrimidine-indole scaffolds have been shown to have advantages in cancer treatment. Fluorescent antitumor drugs BF<sub>3</sub>-o, m, p-phenylenediamine pyrimidine-indole derivatives (PYB1, PYB2, and PYB3) were synthesized by linking pyrimidine and indole groups with aniline through a simple step and introducing BF<sub>3</sub>. The drugs exhibit promising antitumor activity and their fluorescent properties make them useful for imaging purposes. The optical properties of the three compounds have been investigated. All of them have fluorescent properties and compound PYB2 has good fluorescent properties. Additionally, the in vitro cytotoxicity of these compounds was evaluated against the human cancer cell line HeLa and the human normal cell line L02. The inhibition rates of HeLa cells treated with PYB1, PYB2, and PYB3 at a concentration of 19.2 μg/mL were 80.91%, 77.72%, and 65.94%, respectively. These results indicate a strong inhibitory effect on cancer cells. Further through the cell imaging experiment, we can see that PYB2 can enter the cell through the cell membrane through the fluorescence scattering diagram, which has good biocompatibility. In addition, the possible interactions between the compounds and Ras protein active sites were analyzed by molecular docking. The three compounds can bind well to Ras protein through hydrogen bonding. This study provides a basis for the development and modification of pyrimidine-indole fluorescent anticancer drugs. Compound PYB2 shows potential as a fluorescent anticancer drug.</p>\",\"PeriodicalId\":708,\"journal\":{\"name\":\"Molecular Diversity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Diversity\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s11030-024-10863-3\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-024-10863-3","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Design, synthesis, and antitumor activity evaluation of BF3-o, m, p-phenylenediamine bridged with pyrimidine-indole BF3 adduction derivatives.
Fluorescent drugs and pyrimidine-indole scaffolds have been shown to have advantages in cancer treatment. Fluorescent antitumor drugs BF3-o, m, p-phenylenediamine pyrimidine-indole derivatives (PYB1, PYB2, and PYB3) were synthesized by linking pyrimidine and indole groups with aniline through a simple step and introducing BF3. The drugs exhibit promising antitumor activity and their fluorescent properties make them useful for imaging purposes. The optical properties of the three compounds have been investigated. All of them have fluorescent properties and compound PYB2 has good fluorescent properties. Additionally, the in vitro cytotoxicity of these compounds was evaluated against the human cancer cell line HeLa and the human normal cell line L02. The inhibition rates of HeLa cells treated with PYB1, PYB2, and PYB3 at a concentration of 19.2 μg/mL were 80.91%, 77.72%, and 65.94%, respectively. These results indicate a strong inhibitory effect on cancer cells. Further through the cell imaging experiment, we can see that PYB2 can enter the cell through the cell membrane through the fluorescence scattering diagram, which has good biocompatibility. In addition, the possible interactions between the compounds and Ras protein active sites were analyzed by molecular docking. The three compounds can bind well to Ras protein through hydrogen bonding. This study provides a basis for the development and modification of pyrimidine-indole fluorescent anticancer drugs. Compound PYB2 shows potential as a fluorescent anticancer drug.
期刊介绍:
Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including:
combinatorial chemistry and parallel synthesis;
small molecule libraries;
microwave synthesis;
flow synthesis;
fluorous synthesis;
diversity oriented synthesis (DOS);
nanoreactors;
click chemistry;
multiplex technologies;
fragment- and ligand-based design;
structure/function/SAR;
computational chemistry and molecular design;
chemoinformatics;
screening techniques and screening interfaces;
analytical and purification methods;
robotics, automation and miniaturization;
targeted libraries;
display libraries;
peptides and peptoids;
proteins;
oligonucleotides;
carbohydrates;
natural diversity;
new methods of library formulation and deconvolution;
directed evolution, origin of life and recombination;
search techniques, landscapes, random chemistry and more;