Ahmed Ashraf, Norhan Badr ElDin, Yasmin Rostom, Badr A. El-Zeany, Ghada A. Sedik
{"title":"同时测定盐酸氯苯那敏和咖啡因及其相关物质的新型 RP-HPLC-DAD 方法","authors":"Ahmed Ashraf, Norhan Badr ElDin, Yasmin Rostom, Badr A. El-Zeany, Ghada A. Sedik","doi":"10.1186/s13065-024-01238-8","DOIUrl":null,"url":null,"abstract":"<div><p>Ensuring the quality control of active pharmaceutical ingredients is crucial for drug products being introduced into the market. Even for established drugs, it is necessary to maintain a cutting-edge impurity control system. To analyze caffeine and chlorphenoxamine hydrochloride in their binary mixture, as well as theophylline and chlorphenoxamine N-oxide as related substances, a reversed phase-high performance liquid chromatography combined with a diode array detector system was created. The chromatographic separation was conducted using a C18 X-select Waters® column. The mobile phase consisted of 20.0 mM potassium dihydrogen phosphate modified to pH 3 with o-phosphoric acid and methanol. A gradient elution program was adopted at a flow rate of 1.3 mL/min and detected at a wavelength of 222 nm. The present methodology demonstrates a concentration ranging from 2–60, 1–80, 0.5–20 to 0.4–20 µg/mL for chlorphenoxamine hydrochloride, caffeine, chlorphenoxamine N-Oxide and theophylline, respectively. Chlorphenoxamine N-Oxide, being an impurity of chlorphenoxamine was prepared by refluxing intact drug with 5% H<sub>2</sub>O<sub>2</sub> for 24 h at 100 °C. One of the objectives of the analytical community is to promote the adoption of green analysis methods, which involve the development of environmentally friendly techniques. The levels of greenness and whiteness were evaluated using four specific tools: Eco-Scale System, GAPI, AGREE, and RGB tool. Furthermore, we have evaluated the greenness of the analytical method presented and compared its performance and greenness to that of the approach described in the literature. In this study, results from CPX and CAF analysis were compared to those obtained in a previous study. The result shows that there is no notable variation in precision and accuracy. The proposed method was validated in accordance with the requirements of ICH.</p></div>","PeriodicalId":496,"journal":{"name":"BMC Chemistry","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bmcchem.biomedcentral.com/counter/pdf/10.1186/s13065-024-01238-8","citationCount":"0","resultStr":"{\"title\":\"Novel RP-HPLC–DAD approach for simultaneous determination of chlorphenoxamine hydrochloride and caffeine with their related substances\",\"authors\":\"Ahmed Ashraf, Norhan Badr ElDin, Yasmin Rostom, Badr A. El-Zeany, Ghada A. Sedik\",\"doi\":\"10.1186/s13065-024-01238-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Ensuring the quality control of active pharmaceutical ingredients is crucial for drug products being introduced into the market. Even for established drugs, it is necessary to maintain a cutting-edge impurity control system. To analyze caffeine and chlorphenoxamine hydrochloride in their binary mixture, as well as theophylline and chlorphenoxamine N-oxide as related substances, a reversed phase-high performance liquid chromatography combined with a diode array detector system was created. The chromatographic separation was conducted using a C18 X-select Waters® column. The mobile phase consisted of 20.0 mM potassium dihydrogen phosphate modified to pH 3 with o-phosphoric acid and methanol. A gradient elution program was adopted at a flow rate of 1.3 mL/min and detected at a wavelength of 222 nm. The present methodology demonstrates a concentration ranging from 2–60, 1–80, 0.5–20 to 0.4–20 µg/mL for chlorphenoxamine hydrochloride, caffeine, chlorphenoxamine N-Oxide and theophylline, respectively. Chlorphenoxamine N-Oxide, being an impurity of chlorphenoxamine was prepared by refluxing intact drug with 5% H<sub>2</sub>O<sub>2</sub> for 24 h at 100 °C. One of the objectives of the analytical community is to promote the adoption of green analysis methods, which involve the development of environmentally friendly techniques. The levels of greenness and whiteness were evaluated using four specific tools: Eco-Scale System, GAPI, AGREE, and RGB tool. Furthermore, we have evaluated the greenness of the analytical method presented and compared its performance and greenness to that of the approach described in the literature. In this study, results from CPX and CAF analysis were compared to those obtained in a previous study. The result shows that there is no notable variation in precision and accuracy. The proposed method was validated in accordance with the requirements of ICH.</p></div>\",\"PeriodicalId\":496,\"journal\":{\"name\":\"BMC Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://bmcchem.biomedcentral.com/counter/pdf/10.1186/s13065-024-01238-8\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13065-024-01238-8\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13065-024-01238-8","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Novel RP-HPLC–DAD approach for simultaneous determination of chlorphenoxamine hydrochloride and caffeine with their related substances
Ensuring the quality control of active pharmaceutical ingredients is crucial for drug products being introduced into the market. Even for established drugs, it is necessary to maintain a cutting-edge impurity control system. To analyze caffeine and chlorphenoxamine hydrochloride in their binary mixture, as well as theophylline and chlorphenoxamine N-oxide as related substances, a reversed phase-high performance liquid chromatography combined with a diode array detector system was created. The chromatographic separation was conducted using a C18 X-select Waters® column. The mobile phase consisted of 20.0 mM potassium dihydrogen phosphate modified to pH 3 with o-phosphoric acid and methanol. A gradient elution program was adopted at a flow rate of 1.3 mL/min and detected at a wavelength of 222 nm. The present methodology demonstrates a concentration ranging from 2–60, 1–80, 0.5–20 to 0.4–20 µg/mL for chlorphenoxamine hydrochloride, caffeine, chlorphenoxamine N-Oxide and theophylline, respectively. Chlorphenoxamine N-Oxide, being an impurity of chlorphenoxamine was prepared by refluxing intact drug with 5% H2O2 for 24 h at 100 °C. One of the objectives of the analytical community is to promote the adoption of green analysis methods, which involve the development of environmentally friendly techniques. The levels of greenness and whiteness were evaluated using four specific tools: Eco-Scale System, GAPI, AGREE, and RGB tool. Furthermore, we have evaluated the greenness of the analytical method presented and compared its performance and greenness to that of the approach described in the literature. In this study, results from CPX and CAF analysis were compared to those obtained in a previous study. The result shows that there is no notable variation in precision and accuracy. The proposed method was validated in accordance with the requirements of ICH.
期刊介绍:
BMC Chemistry, formerly known as Chemistry Central Journal, is now part of the BMC series journals family.
Chemistry Central Journal has served the chemistry community as a trusted open access resource for more than 10 years – and we are delighted to announce the next step on its journey. In January 2019 the journal has been renamed BMC Chemistry and now strengthens the BMC series footprint in the physical sciences by publishing quality articles and by pushing the boundaries of open chemistry.