卫星时钟建模对基于全球导航卫星系统的地心运动测定的影响

IF 3.9 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Shiwei Guo, Lei Fan, Na Wei, Shengfeng Gu, Xinqi Fang, Guifei Jing, Chuang Shi
{"title":"卫星时钟建模对基于全球导航卫星系统的地心运动测定的影响","authors":"Shiwei Guo, Lei Fan, Na Wei, Shengfeng Gu, Xinqi Fang, Guifei Jing, Chuang Shi","doi":"10.1007/s00190-024-01879-6","DOIUrl":null,"url":null,"abstract":"<p>In the geocenter motion determination using the Global Navigation Satellite Systems (GNSS), satellite clock offsets are usually estimated as white noise process. The correlation between geocenter coordinates (GCC) and the epoch-wise satellite clocks brings inferior GCC estimates, especially for the Z component. In this contribution, satellite clock offsets are described by the polynomial model, and the deviation of the model from the truth is estimated as a random parameter whose process noise is described by the variogram. Based on 3.7 years of BDS, Galileo and GPS observations from 98 global stations, we investigate the impact of the atomic clock model on GCC estimates. After employing the proposed model, the formal errors of GCC-Z component are reduced by 23–46%, 15–31% and 3–9% for BDS, Galileo and GPS, respectively. When the 7-parameter extended empirical CODE orbit model with the a priori box-wing model (BE7) is used, the atomic clock model reduces the correlation of the B<sub>1C</sub> parameter and GCC-Z component by 0.28, 0.23 and 0.07 for BDS, Galileo and GPS, respectively. Besides, a mitigation of about 60% is obtained at the 3rd and 5th BDS draconitic harmonics and a mitigation of 55% at the 3rd Galileo draconitic harmonic for the GCC-Z component. The proposed model also contributes to reduce the annual amplitudes of single BDS, Galileo and GPS solutions, improving the agreement with the Satellite Laser Ranging solutions. As an additional verification, the resulting satellite orbits are also improved by satellite clock modeling. When the BE7 model is applied, the day boundary discontinuities of daily orbits are reduced by 3.4–3.6%, and the RMS of orbit differences relative to the ESA precise orbits is reduced by 8.2–8.5% for BDS and Galileo.</p>","PeriodicalId":54822,"journal":{"name":"Journal of Geodesy","volume":"36 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of satellite clock modeling on the GNSS-based geocenter motion determination\",\"authors\":\"Shiwei Guo, Lei Fan, Na Wei, Shengfeng Gu, Xinqi Fang, Guifei Jing, Chuang Shi\",\"doi\":\"10.1007/s00190-024-01879-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the geocenter motion determination using the Global Navigation Satellite Systems (GNSS), satellite clock offsets are usually estimated as white noise process. The correlation between geocenter coordinates (GCC) and the epoch-wise satellite clocks brings inferior GCC estimates, especially for the Z component. In this contribution, satellite clock offsets are described by the polynomial model, and the deviation of the model from the truth is estimated as a random parameter whose process noise is described by the variogram. Based on 3.7 years of BDS, Galileo and GPS observations from 98 global stations, we investigate the impact of the atomic clock model on GCC estimates. After employing the proposed model, the formal errors of GCC-Z component are reduced by 23–46%, 15–31% and 3–9% for BDS, Galileo and GPS, respectively. When the 7-parameter extended empirical CODE orbit model with the a priori box-wing model (BE7) is used, the atomic clock model reduces the correlation of the B<sub>1C</sub> parameter and GCC-Z component by 0.28, 0.23 and 0.07 for BDS, Galileo and GPS, respectively. Besides, a mitigation of about 60% is obtained at the 3rd and 5th BDS draconitic harmonics and a mitigation of 55% at the 3rd Galileo draconitic harmonic for the GCC-Z component. The proposed model also contributes to reduce the annual amplitudes of single BDS, Galileo and GPS solutions, improving the agreement with the Satellite Laser Ranging solutions. As an additional verification, the resulting satellite orbits are also improved by satellite clock modeling. When the BE7 model is applied, the day boundary discontinuities of daily orbits are reduced by 3.4–3.6%, and the RMS of orbit differences relative to the ESA precise orbits is reduced by 8.2–8.5% for BDS and Galileo.</p>\",\"PeriodicalId\":54822,\"journal\":{\"name\":\"Journal of Geodesy\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geodesy\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s00190-024-01879-6\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geodesy","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00190-024-01879-6","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

在利用全球导航卫星系统(GNSS)确定地心运动时,卫星时钟偏移通常是作为白噪声过程估算的。地心坐标(GCC)与历时卫星时钟之间的相关性会带来较差的 GCC 估计值,尤其是 Z 分量。在这篇论文中,卫星时钟偏移由多项式模型描述,模型与事实的偏差作为随机参数估计,其过程噪声由变异图描述。根据来自全球 98 个站点的 3.7 年 BDS、伽利略和 GPS 观测数据,我们研究了原子钟模型对 GCC 估计值的影响。采用提出的模型后,BDS、伽利略和全球定位系统的 GCC-Z 部分的形式误差分别减少了 23%-46%、15%-31% 和 3%-9%。当使用带有先验盒翼模型(BE7)的7参数扩展经验CODE轨道模型时,原子钟模型分别将BDS、伽利略和GPS的B1C参数和GCC-Z分量的相关性降低了0.28、0.23和0.07。此外,对于 GCC-Z 分量,BDS 的第 3 次和第 5 次 draconitic 谐波降低了约 60%,伽利略的第 3 次 draconitic 谐波降低了 55%。所提出的模型还有助于降低单个 BDS、伽利略和 GPS 解决方案的年振幅,提高与卫星激光测距解决方案的一致性。作为额外的验证,卫星时钟建模也改善了所得到的卫星轨道。当应用 BE7 模型时,日轨道的日边界不连续性降低了 3.4-3.6%,相对于欧空局精确轨道的轨道差异均方根(RMS)降低了 8.2-8.5%(BDS 和伽利略)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Impact of satellite clock modeling on the GNSS-based geocenter motion determination

Impact of satellite clock modeling on the GNSS-based geocenter motion determination

In the geocenter motion determination using the Global Navigation Satellite Systems (GNSS), satellite clock offsets are usually estimated as white noise process. The correlation between geocenter coordinates (GCC) and the epoch-wise satellite clocks brings inferior GCC estimates, especially for the Z component. In this contribution, satellite clock offsets are described by the polynomial model, and the deviation of the model from the truth is estimated as a random parameter whose process noise is described by the variogram. Based on 3.7 years of BDS, Galileo and GPS observations from 98 global stations, we investigate the impact of the atomic clock model on GCC estimates. After employing the proposed model, the formal errors of GCC-Z component are reduced by 23–46%, 15–31% and 3–9% for BDS, Galileo and GPS, respectively. When the 7-parameter extended empirical CODE orbit model with the a priori box-wing model (BE7) is used, the atomic clock model reduces the correlation of the B1C parameter and GCC-Z component by 0.28, 0.23 and 0.07 for BDS, Galileo and GPS, respectively. Besides, a mitigation of about 60% is obtained at the 3rd and 5th BDS draconitic harmonics and a mitigation of 55% at the 3rd Galileo draconitic harmonic for the GCC-Z component. The proposed model also contributes to reduce the annual amplitudes of single BDS, Galileo and GPS solutions, improving the agreement with the Satellite Laser Ranging solutions. As an additional verification, the resulting satellite orbits are also improved by satellite clock modeling. When the BE7 model is applied, the day boundary discontinuities of daily orbits are reduced by 3.4–3.6%, and the RMS of orbit differences relative to the ESA precise orbits is reduced by 8.2–8.5% for BDS and Galileo.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geodesy
Journal of Geodesy 地学-地球化学与地球物理
CiteScore
8.60
自引率
9.10%
发文量
85
审稿时长
9 months
期刊介绍: The Journal of Geodesy is an international journal concerned with the study of scientific problems of geodesy and related interdisciplinary sciences. Peer-reviewed papers are published on theoretical or modeling studies, and on results of experiments and interpretations. Besides original research papers, the journal includes commissioned review papers on topical subjects and special issues arising from chosen scientific symposia or workshops. The journal covers the whole range of geodetic science and reports on theoretical and applied studies in research areas such as: -Positioning -Reference frame -Geodetic networks -Modeling and quality control -Space geodesy -Remote sensing -Gravity fields -Geodynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信