Shuichi Katsumata, Yi-Fu Lai, Jason T. LeGrow, Ling Qin
{"title":"CSI-Otter:基于同源性的(部分)类组行动盲签名,别出心裁","authors":"Shuichi Katsumata, Yi-Fu Lai, Jason T. LeGrow, Ling Qin","doi":"10.1007/s10623-024-01441-7","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we construct the first provably-secure isogeny-based (partially) blind signature scheme. While at a high level the scheme resembles the Schnorr blind signature, our work does not directly follow from that construction, since isogenies do not offer as rich an algebraic structure. Specifically, our protocol does not fit into the <i>linear identification protocol</i> abstraction introduced by Hauck, Kiltz, and Loss (EUROCYRPT’19), which was used to generically construct Schnorr-like blind signatures based on modules such as classical groups and lattices. Consequently, our scheme is provably secure in the random oracle model (ROM) against poly-logarithmically-many concurrent sessions assuming the subexponential hardness of the group action inverse problem. In more detail, our blind signature exploits the <i>quadratic twist</i> of an elliptic curve in an essential way to endow isogenies with a strictly richer structure than abstract group actions (but still more restrictive than modules). The basic scheme has public key size 128 B and signature size 8 KB under the CSIDH-512 parameter sets—these are the smallest among all provably secure post-quantum secure blind signatures. Relying on a new <i>ring</i> variant of the group action inverse problem (<span>\\(\\textsf{rGAIP}\\)</span>), we can halve the signature size to 4 KB while increasing the public key size to 512 B. We provide preliminary cryptanalysis of <span>\\({\\textsf{rGAIP}} \\)</span> and show that for certain parameter settings, it is essentially as secure as the standard <span>\\(\\textsf{GAIP}\\)</span>. Finally, we show a novel way to turn our blind signature into a partially blind signature, where we deviate from prior methods since they require hashing into the set of public keys while hiding the corresponding secret key—constructing such a hash function in the isogeny setting remains an open problem.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CSI-Otter: isogeny-based (partially) blind signatures from the class group action with a twist\",\"authors\":\"Shuichi Katsumata, Yi-Fu Lai, Jason T. LeGrow, Ling Qin\",\"doi\":\"10.1007/s10623-024-01441-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we construct the first provably-secure isogeny-based (partially) blind signature scheme. While at a high level the scheme resembles the Schnorr blind signature, our work does not directly follow from that construction, since isogenies do not offer as rich an algebraic structure. Specifically, our protocol does not fit into the <i>linear identification protocol</i> abstraction introduced by Hauck, Kiltz, and Loss (EUROCYRPT’19), which was used to generically construct Schnorr-like blind signatures based on modules such as classical groups and lattices. Consequently, our scheme is provably secure in the random oracle model (ROM) against poly-logarithmically-many concurrent sessions assuming the subexponential hardness of the group action inverse problem. In more detail, our blind signature exploits the <i>quadratic twist</i> of an elliptic curve in an essential way to endow isogenies with a strictly richer structure than abstract group actions (but still more restrictive than modules). The basic scheme has public key size 128 B and signature size 8 KB under the CSIDH-512 parameter sets—these are the smallest among all provably secure post-quantum secure blind signatures. Relying on a new <i>ring</i> variant of the group action inverse problem (<span>\\\\(\\\\textsf{rGAIP}\\\\)</span>), we can halve the signature size to 4 KB while increasing the public key size to 512 B. We provide preliminary cryptanalysis of <span>\\\\({\\\\textsf{rGAIP}} \\\\)</span> and show that for certain parameter settings, it is essentially as secure as the standard <span>\\\\(\\\\textsf{GAIP}\\\\)</span>. Finally, we show a novel way to turn our blind signature into a partially blind signature, where we deviate from prior methods since they require hashing into the set of public keys while hiding the corresponding secret key—constructing such a hash function in the isogeny setting remains an open problem.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10623-024-01441-7\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10623-024-01441-7","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
CSI-Otter: isogeny-based (partially) blind signatures from the class group action with a twist
In this paper, we construct the first provably-secure isogeny-based (partially) blind signature scheme. While at a high level the scheme resembles the Schnorr blind signature, our work does not directly follow from that construction, since isogenies do not offer as rich an algebraic structure. Specifically, our protocol does not fit into the linear identification protocol abstraction introduced by Hauck, Kiltz, and Loss (EUROCYRPT’19), which was used to generically construct Schnorr-like blind signatures based on modules such as classical groups and lattices. Consequently, our scheme is provably secure in the random oracle model (ROM) against poly-logarithmically-many concurrent sessions assuming the subexponential hardness of the group action inverse problem. In more detail, our blind signature exploits the quadratic twist of an elliptic curve in an essential way to endow isogenies with a strictly richer structure than abstract group actions (but still more restrictive than modules). The basic scheme has public key size 128 B and signature size 8 KB under the CSIDH-512 parameter sets—these are the smallest among all provably secure post-quantum secure blind signatures. Relying on a new ring variant of the group action inverse problem (\(\textsf{rGAIP}\)), we can halve the signature size to 4 KB while increasing the public key size to 512 B. We provide preliminary cryptanalysis of \({\textsf{rGAIP}} \) and show that for certain parameter settings, it is essentially as secure as the standard \(\textsf{GAIP}\). Finally, we show a novel way to turn our blind signature into a partially blind signature, where we deviate from prior methods since they require hashing into the set of public keys while hiding the corresponding secret key—constructing such a hash function in the isogeny setting remains an open problem.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.