Jinghan Xu;Shengguo Xia;Lixue Chen;Chengxian Li;Hongdan Yang
{"title":"用于电枢和导轨界面电流数值研究的片元近似法","authors":"Jinghan Xu;Shengguo Xia;Lixue Chen;Chengxian Li;Hongdan Yang","doi":"10.1109/JMMCT.2024.3422609","DOIUrl":null,"url":null,"abstract":"The armature and rail (A/R) interface is an imperfect contact that is made at discrete asperities at the microscale resulting from high contact pressure. The current distribution of the interface differs significantly from the bulk behavior. In this paper, based on the contact layer model (CLM) and the Cooper-Mikic-Yoranovich model (CMYM), sheet element approximation and boundary conditions are proposed to analyze the electromagnetic properties of the A/R interface. Assuming zero gradients of the magnetic vector in the thickness direction, there are two ways for the approximation, which are mathematical approximation (MA) and physical approximation (PA). Results from both methods show high agreement, consistent with results from slit boundary conditions. Current distributions on both stationary and sliding A/R interfaces are numerically investigated. On the stationary interface, current diffuses from the edges to the central part of the real contact area, whereas on the sliding interface, current concentration occurs at the trailing edge due to the velocity skin effect (VSE). Furthermore, the contour of the current distribution aligns with the erosion pattern observed in experiments, validating the accuracy of the computational method.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sheet Element Approximation for Numerical Study of Current on Armature and Rail Interface\",\"authors\":\"Jinghan Xu;Shengguo Xia;Lixue Chen;Chengxian Li;Hongdan Yang\",\"doi\":\"10.1109/JMMCT.2024.3422609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The armature and rail (A/R) interface is an imperfect contact that is made at discrete asperities at the microscale resulting from high contact pressure. The current distribution of the interface differs significantly from the bulk behavior. In this paper, based on the contact layer model (CLM) and the Cooper-Mikic-Yoranovich model (CMYM), sheet element approximation and boundary conditions are proposed to analyze the electromagnetic properties of the A/R interface. Assuming zero gradients of the magnetic vector in the thickness direction, there are two ways for the approximation, which are mathematical approximation (MA) and physical approximation (PA). Results from both methods show high agreement, consistent with results from slit boundary conditions. Current distributions on both stationary and sliding A/R interfaces are numerically investigated. On the stationary interface, current diffuses from the edges to the central part of the real contact area, whereas on the sliding interface, current concentration occurs at the trailing edge due to the velocity skin effect (VSE). Furthermore, the contour of the current distribution aligns with the erosion pattern observed in experiments, validating the accuracy of the computational method.\",\"PeriodicalId\":52176,\"journal\":{\"name\":\"IEEE Journal on Multiscale and Multiphysics Computational Techniques\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal on Multiscale and Multiphysics Computational Techniques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10584137/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10584137/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Sheet Element Approximation for Numerical Study of Current on Armature and Rail Interface
The armature and rail (A/R) interface is an imperfect contact that is made at discrete asperities at the microscale resulting from high contact pressure. The current distribution of the interface differs significantly from the bulk behavior. In this paper, based on the contact layer model (CLM) and the Cooper-Mikic-Yoranovich model (CMYM), sheet element approximation and boundary conditions are proposed to analyze the electromagnetic properties of the A/R interface. Assuming zero gradients of the magnetic vector in the thickness direction, there are two ways for the approximation, which are mathematical approximation (MA) and physical approximation (PA). Results from both methods show high agreement, consistent with results from slit boundary conditions. Current distributions on both stationary and sliding A/R interfaces are numerically investigated. On the stationary interface, current diffuses from the edges to the central part of the real contact area, whereas on the sliding interface, current concentration occurs at the trailing edge due to the velocity skin effect (VSE). Furthermore, the contour of the current distribution aligns with the erosion pattern observed in experiments, validating the accuracy of the computational method.