利用磁共振成像放射组学和机器学习对小儿弥漫性中线胶质瘤的总体生存率进行早期预后分析:一项双中心研究。

IF 3.7 Q1 CLINICAL NEUROLOGY
Neuro-oncology advances Pub Date : 2024-06-28 eCollection Date: 2024-01-01 DOI:10.1093/noajnl/vdae108
Xinyang Liu, Zhifan Jiang, Holger R Roth, Syed Muhammad Anwar, Erin R Bonner, Aria Mahtabfar, Roger J Packer, Anahita Fathi Kazerooni, Miriam Bornhorst, Marius George Linguraru
{"title":"利用磁共振成像放射组学和机器学习对小儿弥漫性中线胶质瘤的总体生存率进行早期预后分析:一项双中心研究。","authors":"Xinyang Liu, Zhifan Jiang, Holger R Roth, Syed Muhammad Anwar, Erin R Bonner, Aria Mahtabfar, Roger J Packer, Anahita Fathi Kazerooni, Miriam Bornhorst, Marius George Linguraru","doi":"10.1093/noajnl/vdae108","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Diffuse midline gliomas (DMG) are aggressive pediatric brain tumors that are diagnosed and monitored through MRI. We developed an automatic pipeline to segment subregions of DMG and select radiomic features that predict patient overall survival (OS).</p><p><strong>Methods: </strong>We acquired diagnostic and post-radiation therapy (RT) multisequence MRI (T1, T1ce, T2, and T2 FLAIR) and manual segmentations from 2 centers: 53 from 1 center formed the internal cohort and 16 from the other center formed the external cohort. We pretrained a deep learning model on a public adult brain tumor data set (BraTS 2021), and finetuned it to automatically segment tumor core (TC) and whole tumor (WT) volumes. PyRadiomics and sequential feature selection were used for feature extraction and selection based on the segmented volumes. Two machine learning models were trained on our internal cohort to predict patient 12-month survival from diagnosis. One model used only data obtained at diagnosis prior to any therapy (baseline study) and the other used data at both diagnosis and post-RT (post-RT study).</p><p><strong>Results: </strong>Overall survival prediction accuracy was 77% and 81% for the baseline study, and 85% and 78% for the post-RT study, for internal and external cohorts, respectively. Homogeneous WT intensity in baseline T2 FLAIR and larger post-RT TC/WT volume ratio indicate shorter OS.</p><p><strong>Conclusions: </strong>Machine learning analysis of MRI radiomics has potential to accurately and noninvasively predict which pediatric patients with DMG will survive less than 12 months from the time of diagnosis to provide patient stratification and guide therapy.</p>","PeriodicalId":94157,"journal":{"name":"Neuro-oncology advances","volume":"6 1","pages":"vdae108"},"PeriodicalIF":3.7000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11255990/pdf/","citationCount":"0","resultStr":"{\"title\":\"Early prognostication of overall survival for pediatric diffuse midline gliomas using MRI radiomics and machine learning: A two-center study.\",\"authors\":\"Xinyang Liu, Zhifan Jiang, Holger R Roth, Syed Muhammad Anwar, Erin R Bonner, Aria Mahtabfar, Roger J Packer, Anahita Fathi Kazerooni, Miriam Bornhorst, Marius George Linguraru\",\"doi\":\"10.1093/noajnl/vdae108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Diffuse midline gliomas (DMG) are aggressive pediatric brain tumors that are diagnosed and monitored through MRI. We developed an automatic pipeline to segment subregions of DMG and select radiomic features that predict patient overall survival (OS).</p><p><strong>Methods: </strong>We acquired diagnostic and post-radiation therapy (RT) multisequence MRI (T1, T1ce, T2, and T2 FLAIR) and manual segmentations from 2 centers: 53 from 1 center formed the internal cohort and 16 from the other center formed the external cohort. We pretrained a deep learning model on a public adult brain tumor data set (BraTS 2021), and finetuned it to automatically segment tumor core (TC) and whole tumor (WT) volumes. PyRadiomics and sequential feature selection were used for feature extraction and selection based on the segmented volumes. Two machine learning models were trained on our internal cohort to predict patient 12-month survival from diagnosis. One model used only data obtained at diagnosis prior to any therapy (baseline study) and the other used data at both diagnosis and post-RT (post-RT study).</p><p><strong>Results: </strong>Overall survival prediction accuracy was 77% and 81% for the baseline study, and 85% and 78% for the post-RT study, for internal and external cohorts, respectively. Homogeneous WT intensity in baseline T2 FLAIR and larger post-RT TC/WT volume ratio indicate shorter OS.</p><p><strong>Conclusions: </strong>Machine learning analysis of MRI radiomics has potential to accurately and noninvasively predict which pediatric patients with DMG will survive less than 12 months from the time of diagnosis to provide patient stratification and guide therapy.</p>\",\"PeriodicalId\":94157,\"journal\":{\"name\":\"Neuro-oncology advances\",\"volume\":\"6 1\",\"pages\":\"vdae108\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11255990/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuro-oncology advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/noajnl/vdae108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuro-oncology advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/noajnl/vdae108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:弥漫性中线胶质瘤(DMG弥漫中线胶质瘤(DMG)是一种侵袭性小儿脑肿瘤,通过核磁共振成像进行诊断和监测。我们开发了一种自动流水线来分割DMG的亚区域,并选择能预测患者总生存期(OS)的放射学特征:我们从 2 个中心获取了诊断和放疗(RT)后多序列 MRI(T1、T1ce、T2 和 T2 FLAIR)和手动分割:一个中心的 53 例形成内部队列,另一个中心的 16 例形成外部队列。我们在公共成人脑肿瘤数据集(BraTS 2021)上预训练了一个深度学习模型,并对其进行了微调,以自动分割肿瘤核心(TC)和全瘤(WT)体积。PyRadiomics 和顺序特征选择用于基于分割的体积进行特征提取和选择。我们在内部队列中训练了两个机器学习模型,以预测患者从诊断开始的 12 个月生存率。其中一个模型仅使用了诊断时未接受任何治疗时获得的数据(基线研究),另一个模型则使用了诊断时和 RT 后的数据(RT 后研究):基线研究的总体生存预测准确率为77%,RT后研究的总体生存预测准确率为81%,内部和外部队列的总体生存预测准确率分别为85%和78%。基线T2 FLAIR中均匀的WT强度和RT后较大的TC/WT体积比预示着较短的OS:磁共振成像放射组学的机器学习分析有望准确、无创地预测哪些儿科DMG患者自诊断时起存活时间将少于12个月,从而对患者进行分层并指导治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Early prognostication of overall survival for pediatric diffuse midline gliomas using MRI radiomics and machine learning: A two-center study.

Background: Diffuse midline gliomas (DMG) are aggressive pediatric brain tumors that are diagnosed and monitored through MRI. We developed an automatic pipeline to segment subregions of DMG and select radiomic features that predict patient overall survival (OS).

Methods: We acquired diagnostic and post-radiation therapy (RT) multisequence MRI (T1, T1ce, T2, and T2 FLAIR) and manual segmentations from 2 centers: 53 from 1 center formed the internal cohort and 16 from the other center formed the external cohort. We pretrained a deep learning model on a public adult brain tumor data set (BraTS 2021), and finetuned it to automatically segment tumor core (TC) and whole tumor (WT) volumes. PyRadiomics and sequential feature selection were used for feature extraction and selection based on the segmented volumes. Two machine learning models were trained on our internal cohort to predict patient 12-month survival from diagnosis. One model used only data obtained at diagnosis prior to any therapy (baseline study) and the other used data at both diagnosis and post-RT (post-RT study).

Results: Overall survival prediction accuracy was 77% and 81% for the baseline study, and 85% and 78% for the post-RT study, for internal and external cohorts, respectively. Homogeneous WT intensity in baseline T2 FLAIR and larger post-RT TC/WT volume ratio indicate shorter OS.

Conclusions: Machine learning analysis of MRI radiomics has potential to accurately and noninvasively predict which pediatric patients with DMG will survive less than 12 months from the time of diagnosis to provide patient stratification and guide therapy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
0
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信