SARS-CoV-2 复制与药物研发。

IF 2.3 3区 生物学 Q3 BIOCHEMICAL RESEARCH METHODS
Farah Nazir , Arnaud John Kombe Kombe , Zunera Khalid , Shaheen Bibi , Hongliang Zhang , Songquan Wu , Tengchuan Jin
{"title":"SARS-CoV-2 复制与药物研发。","authors":"Farah Nazir ,&nbsp;Arnaud John Kombe Kombe ,&nbsp;Zunera Khalid ,&nbsp;Shaheen Bibi ,&nbsp;Hongliang Zhang ,&nbsp;Songquan Wu ,&nbsp;Tengchuan Jin","doi":"10.1016/j.mcp.2024.101973","DOIUrl":null,"url":null,"abstract":"<div><p>The coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has killed millions of people and continues to wreak havoc across the globe. This sudden and deadly pandemic emphasizes the necessity for anti-viral drug development that can be rapidly administered to reduce morbidity, mortality, and virus propagation. Thus, lacking efficient anti-COVID-19 treatment, and especially given the lengthy drug development process as well as the critical death tool that has been associated with SARS-CoV-2 since its outbreak, drug repurposing (or repositioning) constitutes so far, the ideal and ready-to-go best approach in mitigating viral spread, containing the infection, and reducing the COVID-19-associated death rate. Indeed, based on the molecular similarity approach of SARS-CoV-2 with previous coronaviruses (CoVs), repurposed drugs have been reported to hamper SARS-CoV-2 replication. Therefore, understanding the inhibition mechanisms of viral replication by repurposed anti-viral drugs and chemicals known to block CoV and SARS-CoV-2 multiplication is crucial, and it opens the way for particular treatment options and COVID-19 therapeutics. In this review, we highlighted molecular basics underlying drug-repurposing strategies against SARS-CoV-2. Notably, we discussed inhibition mechanisms of viral replication, involving and including inhibition of SARS-CoV-2 proteases (3C-like protease, 3CL<sup>pro</sup> or Papain-like protease, PL<sup>pro</sup>) by protease inhibitors such as Carmofur, Ebselen, and GRL017, polymerases (RNA-dependent RNA-polymerase, RdRp) by drugs like Suramin, Remdesivir, or Favipiravir, and proteins/peptides inhibiting virus-cell fusion and host cell replication pathways, such as Disulfiram, GC376, and Molnupiravir. When applicable, comparisons with SARS-CoV inhibitors approved for clinical use were made to provide further insights to understand molecular basics in inhibiting SARS-CoV-2 replication and draw conclusions for future drug discovery research.</p></div>","PeriodicalId":49799,"journal":{"name":"Molecular and Cellular Probes","volume":"77 ","pages":"Article 101973"},"PeriodicalIF":2.3000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0890850824000252/pdfft?md5=ce4435cfc161a5a1c58308335aa8f8a2&pid=1-s2.0-S0890850824000252-main.pdf","citationCount":"0","resultStr":"{\"title\":\"SARS-CoV-2 replication and drug discovery\",\"authors\":\"Farah Nazir ,&nbsp;Arnaud John Kombe Kombe ,&nbsp;Zunera Khalid ,&nbsp;Shaheen Bibi ,&nbsp;Hongliang Zhang ,&nbsp;Songquan Wu ,&nbsp;Tengchuan Jin\",\"doi\":\"10.1016/j.mcp.2024.101973\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has killed millions of people and continues to wreak havoc across the globe. This sudden and deadly pandemic emphasizes the necessity for anti-viral drug development that can be rapidly administered to reduce morbidity, mortality, and virus propagation. Thus, lacking efficient anti-COVID-19 treatment, and especially given the lengthy drug development process as well as the critical death tool that has been associated with SARS-CoV-2 since its outbreak, drug repurposing (or repositioning) constitutes so far, the ideal and ready-to-go best approach in mitigating viral spread, containing the infection, and reducing the COVID-19-associated death rate. Indeed, based on the molecular similarity approach of SARS-CoV-2 with previous coronaviruses (CoVs), repurposed drugs have been reported to hamper SARS-CoV-2 replication. Therefore, understanding the inhibition mechanisms of viral replication by repurposed anti-viral drugs and chemicals known to block CoV and SARS-CoV-2 multiplication is crucial, and it opens the way for particular treatment options and COVID-19 therapeutics. In this review, we highlighted molecular basics underlying drug-repurposing strategies against SARS-CoV-2. Notably, we discussed inhibition mechanisms of viral replication, involving and including inhibition of SARS-CoV-2 proteases (3C-like protease, 3CL<sup>pro</sup> or Papain-like protease, PL<sup>pro</sup>) by protease inhibitors such as Carmofur, Ebselen, and GRL017, polymerases (RNA-dependent RNA-polymerase, RdRp) by drugs like Suramin, Remdesivir, or Favipiravir, and proteins/peptides inhibiting virus-cell fusion and host cell replication pathways, such as Disulfiram, GC376, and Molnupiravir. When applicable, comparisons with SARS-CoV inhibitors approved for clinical use were made to provide further insights to understand molecular basics in inhibiting SARS-CoV-2 replication and draw conclusions for future drug discovery research.</p></div>\",\"PeriodicalId\":49799,\"journal\":{\"name\":\"Molecular and Cellular Probes\",\"volume\":\"77 \",\"pages\":\"Article 101973\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0890850824000252/pdfft?md5=ce4435cfc161a5a1c58308335aa8f8a2&pid=1-s2.0-S0890850824000252-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular and Cellular Probes\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0890850824000252\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Probes","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0890850824000252","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

由严重急性呼吸系统综合征冠状病毒 2(SARS-CoV-2)引起的 2019 年冠状病毒病(COVID-19)已造成数百万人死亡,并继续在全球范围内造成严重破坏。这场突如其来的致命大流行凸显了抗病毒药物开发的必要性,这种药物可以快速给药,以降低发病率、死亡率和病毒传播率。因此,在缺乏有效的抗 COVID-19 治疗方法的情况下,特别是考虑到漫长的药物开发过程,以及自 SARS-CoV-2 爆发以来与之相关的重要死亡工具,药物的再利用(或再定位)是迄今为止最理想、最现成的缓解病毒传播、控制感染和降低 COVID-19 相关死亡率的最佳方法。事实上,根据 SARS-CoV-2 与以往冠状病毒(CoVs)的分子相似性方法,有报道称再利用药物可阻碍 SARS-CoV-2 的复制。因此,了解再利用抗病毒药物和已知可阻止 CoV 和 SARS-CoV-2 繁殖的化学物质对病毒复制的抑制机制至关重要,它为特定的治疗方案和 COVID-19 疗法开辟了道路。在这篇综述中,我们强调了针对 SARS-CoV-2 的药物再利用战略的分子基础。值得注意的是,我们讨论了病毒复制的抑制机制,包括蛋白酶抑制剂(如 Carmofur、Ebselen、和 GRL017 等蛋白酶抑制剂;Suramin、Remdesivir 或 Favipiravir 等聚合酶(RNA 依赖性 RNA 聚合酶,RdRp);以及抑制病毒细胞融合和宿主细胞复制途径的蛋白/肽,如 Disulfiram、GC376 和 Molnupiravir。在适当的情况下,还与已批准用于临床的 SARS-CoV 抑制剂进行了比较,以便进一步了解抑制 SARS-CoV-2 复制的分子基本原理,并为今后的药物发现研究得出结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SARS-CoV-2 replication and drug discovery

The coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has killed millions of people and continues to wreak havoc across the globe. This sudden and deadly pandemic emphasizes the necessity for anti-viral drug development that can be rapidly administered to reduce morbidity, mortality, and virus propagation. Thus, lacking efficient anti-COVID-19 treatment, and especially given the lengthy drug development process as well as the critical death tool that has been associated with SARS-CoV-2 since its outbreak, drug repurposing (or repositioning) constitutes so far, the ideal and ready-to-go best approach in mitigating viral spread, containing the infection, and reducing the COVID-19-associated death rate. Indeed, based on the molecular similarity approach of SARS-CoV-2 with previous coronaviruses (CoVs), repurposed drugs have been reported to hamper SARS-CoV-2 replication. Therefore, understanding the inhibition mechanisms of viral replication by repurposed anti-viral drugs and chemicals known to block CoV and SARS-CoV-2 multiplication is crucial, and it opens the way for particular treatment options and COVID-19 therapeutics. In this review, we highlighted molecular basics underlying drug-repurposing strategies against SARS-CoV-2. Notably, we discussed inhibition mechanisms of viral replication, involving and including inhibition of SARS-CoV-2 proteases (3C-like protease, 3CLpro or Papain-like protease, PLpro) by protease inhibitors such as Carmofur, Ebselen, and GRL017, polymerases (RNA-dependent RNA-polymerase, RdRp) by drugs like Suramin, Remdesivir, or Favipiravir, and proteins/peptides inhibiting virus-cell fusion and host cell replication pathways, such as Disulfiram, GC376, and Molnupiravir. When applicable, comparisons with SARS-CoV inhibitors approved for clinical use were made to provide further insights to understand molecular basics in inhibiting SARS-CoV-2 replication and draw conclusions for future drug discovery research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular and Cellular Probes
Molecular and Cellular Probes 生物-生化研究方法
CiteScore
6.80
自引率
0.00%
发文量
52
审稿时长
16 days
期刊介绍: MCP - Advancing biology through–omics and bioinformatic technologies wants to capture outcomes from the current revolution in molecular technologies and sciences. The journal has broadened its scope and embraces any high quality research papers, reviews and opinions in areas including, but not limited to, molecular biology, cell biology, biochemistry, immunology, physiology, epidemiology, ecology, virology, microbiology, parasitology, genetics, evolutionary biology, genomics (including metagenomics), bioinformatics, proteomics, metabolomics, glycomics, and lipidomics. Submissions with a technology-driven focus on understanding normal biological or disease processes as well as conceptual advances and paradigm shifts are particularly encouraged. The Editors welcome fundamental or applied research areas; pre-submission enquiries about advanced draft manuscripts are welcomed. Top quality research and manuscripts will be fast-tracked.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信