{"title":"二氢杨梅素抑制铁突变以减轻顺铂诱导的肌肉萎缩","authors":"L You","doi":"10.33549/physiolres.935317","DOIUrl":null,"url":null,"abstract":"<p><p>Cisplatin is a widely used chemotherapy drug for the treatment of various cancers. However, although cisplatin is effective in targeting cancer cells, it has severe side effects including skeletal muscle atrophy. In this study, we aimed to characterize the role of Dihydromyricetin in cisplatin-induced muscle atrophy in mice. 5-week-old male C57BL/6 mice were treated with Dihydromyricetin for 14 days orally followed by in intraperitoneally cisplatin administration for 6 days. Gastrocnemius muscles were isolated for the following experiments. Antioxidative stress were determined by peroxidative product malondialdehyde (MDA) and antioxidants superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities. Quadriceps muscle mass and grip strength were significantly restored by Dihydromyricetin in a dose-dependent manner. Moreover, muscle fibers were improved in Dihydromyricetin treated group. Excessive skeletal muscle E3 ubiquitin-protein ligases in cisplatin group were significantly repressed by Dihydromyricetin treatment. Dihydromyricetin significantly reduced oxidative stress induced by cisplatin by decreasing MDA level and restored SOD and GPx activities. In addition, ferroptosis was significantly reduced by Dihydromyricetin characterized by reduced iron level and ferritin heavy chain 1 and improved Gpx4 level. The present study demonstrated that Dihydromyricetin attenuated cisplatin-induced muscle atrophy by reducing skeletal muscle E3 ubiquitin-protein ligases, oxidative stress, and ferroptosis.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11299785/pdf/","citationCount":"0","resultStr":"{\"title\":\"Dihydromyricetin Inhibits Ferroptosis to Attenuate Cisplatin-Induced Muscle Atrophy.\",\"authors\":\"L You\",\"doi\":\"10.33549/physiolres.935317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cisplatin is a widely used chemotherapy drug for the treatment of various cancers. However, although cisplatin is effective in targeting cancer cells, it has severe side effects including skeletal muscle atrophy. In this study, we aimed to characterize the role of Dihydromyricetin in cisplatin-induced muscle atrophy in mice. 5-week-old male C57BL/6 mice were treated with Dihydromyricetin for 14 days orally followed by in intraperitoneally cisplatin administration for 6 days. Gastrocnemius muscles were isolated for the following experiments. Antioxidative stress were determined by peroxidative product malondialdehyde (MDA) and antioxidants superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities. Quadriceps muscle mass and grip strength were significantly restored by Dihydromyricetin in a dose-dependent manner. Moreover, muscle fibers were improved in Dihydromyricetin treated group. Excessive skeletal muscle E3 ubiquitin-protein ligases in cisplatin group were significantly repressed by Dihydromyricetin treatment. Dihydromyricetin significantly reduced oxidative stress induced by cisplatin by decreasing MDA level and restored SOD and GPx activities. In addition, ferroptosis was significantly reduced by Dihydromyricetin characterized by reduced iron level and ferritin heavy chain 1 and improved Gpx4 level. The present study demonstrated that Dihydromyricetin attenuated cisplatin-induced muscle atrophy by reducing skeletal muscle E3 ubiquitin-protein ligases, oxidative stress, and ferroptosis.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11299785/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.33549/physiolres.935317\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.33549/physiolres.935317","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Dihydromyricetin Inhibits Ferroptosis to Attenuate Cisplatin-Induced Muscle Atrophy.
Cisplatin is a widely used chemotherapy drug for the treatment of various cancers. However, although cisplatin is effective in targeting cancer cells, it has severe side effects including skeletal muscle atrophy. In this study, we aimed to characterize the role of Dihydromyricetin in cisplatin-induced muscle atrophy in mice. 5-week-old male C57BL/6 mice were treated with Dihydromyricetin for 14 days orally followed by in intraperitoneally cisplatin administration for 6 days. Gastrocnemius muscles were isolated for the following experiments. Antioxidative stress were determined by peroxidative product malondialdehyde (MDA) and antioxidants superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities. Quadriceps muscle mass and grip strength were significantly restored by Dihydromyricetin in a dose-dependent manner. Moreover, muscle fibers were improved in Dihydromyricetin treated group. Excessive skeletal muscle E3 ubiquitin-protein ligases in cisplatin group were significantly repressed by Dihydromyricetin treatment. Dihydromyricetin significantly reduced oxidative stress induced by cisplatin by decreasing MDA level and restored SOD and GPx activities. In addition, ferroptosis was significantly reduced by Dihydromyricetin characterized by reduced iron level and ferritin heavy chain 1 and improved Gpx4 level. The present study demonstrated that Dihydromyricetin attenuated cisplatin-induced muscle atrophy by reducing skeletal muscle E3 ubiquitin-protein ligases, oxidative stress, and ferroptosis.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.