N Giles-Donovan, A D Hillier, K Ishida, B V Hampshire, S R Giblin, B Roessli, P M Gehring, G Xu, X Li, H Luo, S Cochran, C Stock
{"title":"Pb(Fe1/2Nb1/2)O3 中的磁集肤效应。","authors":"N Giles-Donovan, A D Hillier, K Ishida, B V Hampshire, S R Giblin, B Roessli, P M Gehring, G Xu, X Li, H Luo, S Cochran, C Stock","doi":"10.1088/1361-648X/ad6523","DOIUrl":null,"url":null,"abstract":"<p><p>Relaxor-ferroelectrics display exceptional dielectric properties resulting from the underlying random dipolar fields induced by strong chemical inhomogeneity. An unusual structural aspect of relaxors is a skin-effect where the near-surface region in single crystals exhibit structures and critical phenomena that differ from the bulk. Relaxors are unique in that this skin effect extends over a macroscopic lengthscale of ∼100 μmwhereas usual surface layers only extend over a few unit cells (or ∼nm). We present a muon spectroscopy study of Pb(Fe_{1/2}Nb_{1/2})O<sub>3</sub>(PFN) which displays ferroelectric order, including many relaxor-like dielectric properties such as a frequency broadened dielectric response, and antiferromagnetism with spatially short-range polar correlations and hence can be termed a multiferroic. In terms of the magnetic behavior determined by the Fe<sup>3+</sup>(S=5/2,<i>L</i> ≈ 0) ions, PFN has been characterized as a unique example of a 'cluster spin-glass'. We use variable momentum muon spectroscopy to study the depth dependence of the slow magnetic relaxations in a large 1 cm<sup>3</sup>crystal of PFN. Zero-field<i>positive</i>muon spin relaxation is parameterized using a stretched exponential, indicative of a distribution of relaxation rates of the Fe<sup>3+</sup>spins. This bandwidth of frequencies changes as a function of muon momentum, indicative of a change in the Fe<sup>3+</sup>relaxation rates as a function of muon implantation depth in our single crystal. Using<i>negative</i>muon elemental analysis, we find small-to-no measurable change in the Fe<sup>3+</sup>/Nb<sup>5+</sup>concentration with depth implying that chemical concentration alone cannot account for the change in the relaxational dynamics. PFN displays an analogous magnetic skin effect reported to exist in the structural properties of relaxor-ferroelectrics.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetic skin effect in Pb(Fe _{1/2}$Nb _{1/2}$)O<sub>3</sub>.\",\"authors\":\"N Giles-Donovan, A D Hillier, K Ishida, B V Hampshire, S R Giblin, B Roessli, P M Gehring, G Xu, X Li, H Luo, S Cochran, C Stock\",\"doi\":\"10.1088/1361-648X/ad6523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Relaxor-ferroelectrics display exceptional dielectric properties resulting from the underlying random dipolar fields induced by strong chemical inhomogeneity. An unusual structural aspect of relaxors is a skin-effect where the near-surface region in single crystals exhibit structures and critical phenomena that differ from the bulk. Relaxors are unique in that this skin effect extends over a macroscopic lengthscale of ∼100 μmwhereas usual surface layers only extend over a few unit cells (or ∼nm). We present a muon spectroscopy study of Pb(Fe_{1/2}Nb_{1/2})O<sub>3</sub>(PFN) which displays ferroelectric order, including many relaxor-like dielectric properties such as a frequency broadened dielectric response, and antiferromagnetism with spatially short-range polar correlations and hence can be termed a multiferroic. In terms of the magnetic behavior determined by the Fe<sup>3+</sup>(S=5/2,<i>L</i> ≈ 0) ions, PFN has been characterized as a unique example of a 'cluster spin-glass'. We use variable momentum muon spectroscopy to study the depth dependence of the slow magnetic relaxations in a large 1 cm<sup>3</sup>crystal of PFN. Zero-field<i>positive</i>muon spin relaxation is parameterized using a stretched exponential, indicative of a distribution of relaxation rates of the Fe<sup>3+</sup>spins. This bandwidth of frequencies changes as a function of muon momentum, indicative of a change in the Fe<sup>3+</sup>relaxation rates as a function of muon implantation depth in our single crystal. Using<i>negative</i>muon elemental analysis, we find small-to-no measurable change in the Fe<sup>3+</sup>/Nb<sup>5+</sup>concentration with depth implying that chemical concentration alone cannot account for the change in the relaxational dynamics. PFN displays an analogous magnetic skin effect reported to exist in the structural properties of relaxor-ferroelectrics.</p>\",\"PeriodicalId\":16776,\"journal\":{\"name\":\"Journal of Physics: Condensed Matter\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics: Condensed Matter\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-648X/ad6523\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/ad6523","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
Magnetic skin effect in Pb(Fe _{1/2}$Nb _{1/2}$)O3.
Relaxor-ferroelectrics display exceptional dielectric properties resulting from the underlying random dipolar fields induced by strong chemical inhomogeneity. An unusual structural aspect of relaxors is a skin-effect where the near-surface region in single crystals exhibit structures and critical phenomena that differ from the bulk. Relaxors are unique in that this skin effect extends over a macroscopic lengthscale of ∼100 μmwhereas usual surface layers only extend over a few unit cells (or ∼nm). We present a muon spectroscopy study of Pb(Fe_{1/2}Nb_{1/2})O3(PFN) which displays ferroelectric order, including many relaxor-like dielectric properties such as a frequency broadened dielectric response, and antiferromagnetism with spatially short-range polar correlations and hence can be termed a multiferroic. In terms of the magnetic behavior determined by the Fe3+(S=5/2,L ≈ 0) ions, PFN has been characterized as a unique example of a 'cluster spin-glass'. We use variable momentum muon spectroscopy to study the depth dependence of the slow magnetic relaxations in a large 1 cm3crystal of PFN. Zero-fieldpositivemuon spin relaxation is parameterized using a stretched exponential, indicative of a distribution of relaxation rates of the Fe3+spins. This bandwidth of frequencies changes as a function of muon momentum, indicative of a change in the Fe3+relaxation rates as a function of muon implantation depth in our single crystal. Usingnegativemuon elemental analysis, we find small-to-no measurable change in the Fe3+/Nb5+concentration with depth implying that chemical concentration alone cannot account for the change in the relaxational dynamics. PFN displays an analogous magnetic skin effect reported to exist in the structural properties of relaxor-ferroelectrics.
期刊介绍:
Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.