Stefano Nuccio, Carina M Germer, Andrea Casolo, Riccardo Borzuola, Luciana Labanca, Jacopo E Rocchi, Pier Paolo Mariani, Francesco Felici, Dario Farina, Deborah Falla, Andrea Macaluso, Paola Sbriccoli, Alessandro Del Vecchio
{"title":"前交叉韧带重建患者控制大腿肌肉的共同突触输入和协同运动单元群的神经可塑性改变。","authors":"Stefano Nuccio, Carina M Germer, Andrea Casolo, Riccardo Borzuola, Luciana Labanca, Jacopo E Rocchi, Pier Paolo Mariani, Francesco Felici, Dario Farina, Deborah Falla, Andrea Macaluso, Paola Sbriccoli, Alessandro Del Vecchio","doi":"10.1152/japplphysiol.00056.2024","DOIUrl":null,"url":null,"abstract":"<p><p>This cross-sectional study aims to elucidate the neural mechanisms underlying the control of knee extension forces in individuals with anterior cruciate ligament reconstruction (ACLR). Eleven soccer players with ACLR and nine control players performed unilateral isometric knee extensions at 10% and 30% of their maximum voluntary force (MVF). Simultaneous recordings of high-density surface electromyography (HDEMG) and force output were conducted for each lower limb, and HDEMG data from the vastus lateralis (VL) and vastus medialis (VM) muscles were decomposed into individual motor unit spike trains. Force steadiness was estimated using the coefficient of variation of force. An intramuscular coherence analysis was adopted to estimate the common synaptic input (CSI) converging to each muscle. A factor analysis was applied to investigate the neural strategies underlying the control of synergistic motor neuron clusters, referred to as motor unit modes. Force steadiness was similar between lower limbs. However, motor neurons innervating the VL on the reconstructed side received a lower proportion of CSI at low-frequency bandwidths (<5 Hz) compared with the unaffected lower limbs (<i>P</i> < 0.01). Furthermore, the reconstructed side demonstrated a higher proportion of motor units associated with the neural input common to the synergistic muscle, as compared with the unaffected lower limbs (<i>P</i> < 0.01). These findings indicate that the VL muscle of reconstructed lower limbs contribute marginally to force steadiness and that a plastic rearrangement in synergistic clusters of motor units involved in the control of knee extension forces is evident following ACLR.<b>NEW & NOTEWORTHY</b> Chronic quadriceps dysfunction is common after anterior cruciate ligament reconstruction (ACLR). We investigated voluntary force control strategies by estimating common inputs to motor neurons innervating the vastii muscles. Our results showed attenuated common inputs to the vastus lateralis and plastic rearrangements in functional clusters of motor neurons modulating knee extension forces in the reconstructed limb. These findings suggest neuroplastic adjustments following ACLR that may occur to fine-tune the control of quadriceps forces.</p>","PeriodicalId":15160,"journal":{"name":"Journal of applied physiology","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neuroplastic alterations in common synaptic inputs and synergistic motor unit clusters controlling the vastii muscles of individuals with ACL reconstruction.\",\"authors\":\"Stefano Nuccio, Carina M Germer, Andrea Casolo, Riccardo Borzuola, Luciana Labanca, Jacopo E Rocchi, Pier Paolo Mariani, Francesco Felici, Dario Farina, Deborah Falla, Andrea Macaluso, Paola Sbriccoli, Alessandro Del Vecchio\",\"doi\":\"10.1152/japplphysiol.00056.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This cross-sectional study aims to elucidate the neural mechanisms underlying the control of knee extension forces in individuals with anterior cruciate ligament reconstruction (ACLR). Eleven soccer players with ACLR and nine control players performed unilateral isometric knee extensions at 10% and 30% of their maximum voluntary force (MVF). Simultaneous recordings of high-density surface electromyography (HDEMG) and force output were conducted for each lower limb, and HDEMG data from the vastus lateralis (VL) and vastus medialis (VM) muscles were decomposed into individual motor unit spike trains. Force steadiness was estimated using the coefficient of variation of force. An intramuscular coherence analysis was adopted to estimate the common synaptic input (CSI) converging to each muscle. A factor analysis was applied to investigate the neural strategies underlying the control of synergistic motor neuron clusters, referred to as motor unit modes. Force steadiness was similar between lower limbs. However, motor neurons innervating the VL on the reconstructed side received a lower proportion of CSI at low-frequency bandwidths (<5 Hz) compared with the unaffected lower limbs (<i>P</i> < 0.01). Furthermore, the reconstructed side demonstrated a higher proportion of motor units associated with the neural input common to the synergistic muscle, as compared with the unaffected lower limbs (<i>P</i> < 0.01). These findings indicate that the VL muscle of reconstructed lower limbs contribute marginally to force steadiness and that a plastic rearrangement in synergistic clusters of motor units involved in the control of knee extension forces is evident following ACLR.<b>NEW & NOTEWORTHY</b> Chronic quadriceps dysfunction is common after anterior cruciate ligament reconstruction (ACLR). We investigated voluntary force control strategies by estimating common inputs to motor neurons innervating the vastii muscles. Our results showed attenuated common inputs to the vastus lateralis and plastic rearrangements in functional clusters of motor neurons modulating knee extension forces in the reconstructed limb. These findings suggest neuroplastic adjustments following ACLR that may occur to fine-tune the control of quadriceps forces.</p>\",\"PeriodicalId\":15160,\"journal\":{\"name\":\"Journal of applied physiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of applied physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1152/japplphysiol.00056.2024\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of applied physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/japplphysiol.00056.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
Neuroplastic alterations in common synaptic inputs and synergistic motor unit clusters controlling the vastii muscles of individuals with ACL reconstruction.
This cross-sectional study aims to elucidate the neural mechanisms underlying the control of knee extension forces in individuals with anterior cruciate ligament reconstruction (ACLR). Eleven soccer players with ACLR and nine control players performed unilateral isometric knee extensions at 10% and 30% of their maximum voluntary force (MVF). Simultaneous recordings of high-density surface electromyography (HDEMG) and force output were conducted for each lower limb, and HDEMG data from the vastus lateralis (VL) and vastus medialis (VM) muscles were decomposed into individual motor unit spike trains. Force steadiness was estimated using the coefficient of variation of force. An intramuscular coherence analysis was adopted to estimate the common synaptic input (CSI) converging to each muscle. A factor analysis was applied to investigate the neural strategies underlying the control of synergistic motor neuron clusters, referred to as motor unit modes. Force steadiness was similar between lower limbs. However, motor neurons innervating the VL on the reconstructed side received a lower proportion of CSI at low-frequency bandwidths (<5 Hz) compared with the unaffected lower limbs (P < 0.01). Furthermore, the reconstructed side demonstrated a higher proportion of motor units associated with the neural input common to the synergistic muscle, as compared with the unaffected lower limbs (P < 0.01). These findings indicate that the VL muscle of reconstructed lower limbs contribute marginally to force steadiness and that a plastic rearrangement in synergistic clusters of motor units involved in the control of knee extension forces is evident following ACLR.NEW & NOTEWORTHY Chronic quadriceps dysfunction is common after anterior cruciate ligament reconstruction (ACLR). We investigated voluntary force control strategies by estimating common inputs to motor neurons innervating the vastii muscles. Our results showed attenuated common inputs to the vastus lateralis and plastic rearrangements in functional clusters of motor neurons modulating knee extension forces in the reconstructed limb. These findings suggest neuroplastic adjustments following ACLR that may occur to fine-tune the control of quadriceps forces.
期刊介绍:
The Journal of Applied Physiology publishes the highest quality original research and reviews that examine novel adaptive and integrative physiological mechanisms in humans and animals that advance the field. The journal encourages the submission of manuscripts that examine the acute and adaptive responses of various organs, tissues, cells and/or molecular pathways to environmental, physiological and/or pathophysiological stressors. As an applied physiology journal, topics of interest are not limited to a particular organ system. The journal, therefore, considers a wide array of integrative and translational research topics examining the mechanisms involved in disease processes and mitigation strategies, as well as the promotion of health and well-being throughout the lifespan. Priority is given to manuscripts that provide mechanistic insight deemed to exert an impact on the field.