Hana Bandouchova, Kamila Novotna Kruzikova, Jan Zukal, Petr Linhart, Jana Sedlackova, Lucie Veitova, Vendula Kalocsanyiova, Jiri Pikula, Zdenka Svobodova
{"title":"欧洲食虫蝙蝠的自然汞暴露量可能会超过公认的毒性阈值。","authors":"Hana Bandouchova, Kamila Novotna Kruzikova, Jan Zukal, Petr Linhart, Jana Sedlackova, Lucie Veitova, Vendula Kalocsanyiova, Jiri Pikula, Zdenka Svobodova","doi":"10.1007/s10646-024-02785-5","DOIUrl":null,"url":null,"abstract":"<p><p>Heavy metals are an important group of toxic substances harmful for many organisms. Of these, mercury is one of the most monitored in the environment. Several matrices are used for the monitoring of environmental load, including a range of organisms; bats, however, have only been examined rarely. Insectivorous bats are apex predators threatened by several human interventions in their natural environment, including heavy metal pollution. The aim of this study was to analyze the content of total mercury in the fur, flight membrane, and pectoral muscle of greater mouse-eared bats (Myotis myotis). Total mercury concentrations were also measured in carabid beetles from the catch locality Zastávka u Brna. Samples were obtained from 43 bat carcasses at two different localities in the Czech Republic (Zastávka u Brna, Malá Morávka). Total mercury content varied between 1.76-72.20 µg/g in fur, 0.04-0.14 µg/g in skin, and 0.05-0.20 µg/g in muscle. Total mercury values in the fur of some individuals from Malá Morávka exceeded the recognized toxicity limit. Furthermore, there was a significant difference (p < 0.001) in content of total mercury in fur between localities, and there was a clear effect of age on concentrations in fur, skin, and muscle, the concentrations being significantly correlated (fur and skin r<sub>s</sub> = 0.783; fur and muscle r<sub>s</sub> = 0.716; skin and muscle r<sub>s</sub> = 0.884). These findings confirm the usefulness of fur samples from living bats for biomonitoring mercury burden in the environment.</p>","PeriodicalId":11497,"journal":{"name":"Ecotoxicology","volume":" ","pages":"948-958"},"PeriodicalIF":2.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11399212/pdf/","citationCount":"0","resultStr":"{\"title\":\"Natural mercury exposure of European insectivorous bats may exceed a recognized toxicity threshold.\",\"authors\":\"Hana Bandouchova, Kamila Novotna Kruzikova, Jan Zukal, Petr Linhart, Jana Sedlackova, Lucie Veitova, Vendula Kalocsanyiova, Jiri Pikula, Zdenka Svobodova\",\"doi\":\"10.1007/s10646-024-02785-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Heavy metals are an important group of toxic substances harmful for many organisms. Of these, mercury is one of the most monitored in the environment. Several matrices are used for the monitoring of environmental load, including a range of organisms; bats, however, have only been examined rarely. Insectivorous bats are apex predators threatened by several human interventions in their natural environment, including heavy metal pollution. The aim of this study was to analyze the content of total mercury in the fur, flight membrane, and pectoral muscle of greater mouse-eared bats (Myotis myotis). Total mercury concentrations were also measured in carabid beetles from the catch locality Zastávka u Brna. Samples were obtained from 43 bat carcasses at two different localities in the Czech Republic (Zastávka u Brna, Malá Morávka). Total mercury content varied between 1.76-72.20 µg/g in fur, 0.04-0.14 µg/g in skin, and 0.05-0.20 µg/g in muscle. Total mercury values in the fur of some individuals from Malá Morávka exceeded the recognized toxicity limit. Furthermore, there was a significant difference (p < 0.001) in content of total mercury in fur between localities, and there was a clear effect of age on concentrations in fur, skin, and muscle, the concentrations being significantly correlated (fur and skin r<sub>s</sub> = 0.783; fur and muscle r<sub>s</sub> = 0.716; skin and muscle r<sub>s</sub> = 0.884). These findings confirm the usefulness of fur samples from living bats for biomonitoring mercury burden in the environment.</p>\",\"PeriodicalId\":11497,\"journal\":{\"name\":\"Ecotoxicology\",\"volume\":\" \",\"pages\":\"948-958\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11399212/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecotoxicology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s10646-024-02785-5\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecotoxicology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10646-024-02785-5","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/19 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
重金属是一类对许多生物体有害的重要有毒物质。其中,汞是环境中监测最多的物质之一。有几种基质被用于监测环境负荷,其中包括一系列生物;但蝙蝠却很少被研究。食虫蝙蝠是顶端捕食者,其自然环境受到人类干预的威胁,包括重金属污染。本研究旨在分析大鼠耳蝠(Myotis myotis)皮毛、飞行膜和胸肌中的总汞含量。此外,还测量了捕获地 Zastávka u Brna 的食肉甲虫体内的总汞浓度。样本取自捷克共和国两个不同地点(Zastávka u Brna、Malá Morávka)的 43 具蝙蝠尸体。皮毛中的总汞含量为 1.76-72.20 µg/g ,皮肤中为 0.04-0.14 µg/g,肌肉中为 0.05-0.20 µg/g。马拉莫拉夫卡一些个体皮毛中的总汞含量超过了公认的毒性限值。此外,两者还存在显著差异(p s = 0.783;皮毛和肌肉的差异率 = 0.716;皮肤和肌肉的差异率 = 0.884)。这些发现证实了活体蝙蝠的毛皮样本对环境中汞负荷生物监测的有用性。
Natural mercury exposure of European insectivorous bats may exceed a recognized toxicity threshold.
Heavy metals are an important group of toxic substances harmful for many organisms. Of these, mercury is one of the most monitored in the environment. Several matrices are used for the monitoring of environmental load, including a range of organisms; bats, however, have only been examined rarely. Insectivorous bats are apex predators threatened by several human interventions in their natural environment, including heavy metal pollution. The aim of this study was to analyze the content of total mercury in the fur, flight membrane, and pectoral muscle of greater mouse-eared bats (Myotis myotis). Total mercury concentrations were also measured in carabid beetles from the catch locality Zastávka u Brna. Samples were obtained from 43 bat carcasses at two different localities in the Czech Republic (Zastávka u Brna, Malá Morávka). Total mercury content varied between 1.76-72.20 µg/g in fur, 0.04-0.14 µg/g in skin, and 0.05-0.20 µg/g in muscle. Total mercury values in the fur of some individuals from Malá Morávka exceeded the recognized toxicity limit. Furthermore, there was a significant difference (p < 0.001) in content of total mercury in fur between localities, and there was a clear effect of age on concentrations in fur, skin, and muscle, the concentrations being significantly correlated (fur and skin rs = 0.783; fur and muscle rs = 0.716; skin and muscle rs = 0.884). These findings confirm the usefulness of fur samples from living bats for biomonitoring mercury burden in the environment.
期刊介绍:
Ecotoxicology is an international journal devoted to the publication of fundamental research on the effects of toxic chemicals on populations, communities and terrestrial, freshwater and marine ecosystems. It aims to elucidate mechanisms and processes whereby chemicals exert their effects on ecosystems and the impact caused at the population or community level. The journal is not biased with respect to taxon or biome, and papers that indicate possible new approaches to regulation and control of toxic chemicals and those aiding in formulating ways of conserving threatened species are particularly welcome. Studies on individuals should demonstrate linkage to population effects in clear and quantitative ways. Laboratory studies must show a clear linkage to specific field situations. The journal includes not only original research papers but technical notes and review articles, both invited and submitted. A strong, broadly based editorial board ensures as wide an international coverage as possible.